Brian DeBosch, M.D., Ph.D.  deboschb@wustl.edu

Profile picture
Assistant Professor of Pediatrics, Gastroenterology, Hepatology and Nutrition
Gastroenterology, Hepatology and Nutrition

phone: (314) 454-6173

Clinical Interests

Non-alcoholic fatty liver disease, Obesity

Education

  • BS, Summa Cum Laude Distinction, University of Michigan2001
  • MD, Washington University School of Medicine2008
  • PhD, Olin Fellowship, Washington University School of Medicine2008

Training

  • Residency, St. Louis Children's Hospital2008 - 2010
  • Fellowship - Accelerated Research Pathway, Washington University School of Medicine2010 - 2014

Licensure and Board Certification

  • 2008 - PresBasic Life Support
  • 2008 - 2010Neonatal Resuscitation Program
  • 2008 - 2010Pediatric Advanced Life Support
  • 2013 - PresAmerican Board of Pediatrics
  • 2015 - 2016MO, Physician & Surgeon License
  • 2015 - PresPediatric Gastroenterology, Hepatology & Nutrition

Honors and Awards

  • National Merit Scholar1997
  • Regents-Alumni Scholar, University of Michigan, Ann Arbor1997
  • UPAAM Outstanding Youth of Michigan Scholar1997
  • Academic Merit Scholar, College of Literature, Science & Arts, University of Michigan, Ann Arbor1997 - 2001
  • Ford Endowed Merit Scholar1997 - 2001
  • James B. Angell Scholar, University of Michigan, Ann Arbor1997 - 2001
  • Class Honors Award, University of Michigan, Ann Arbor1998 - 2001
  • Sophomore Honors Award, University of Michigan, Ann Arbor1999
  • Telluride Association Scholar1999 - 2001
  • Barry M. Goldwater Scholar2000 - 2001
  • Delta Phi Alpha National German Honor Society2001 - Pres
  • National Council on Undergraduate Research Award2001
  • Highest Honors Thesis Distinction, University of Michigan, Ann Arbor2001 - 2001
  • Summa Cum Laude, University of Michigan, Ann Arbor2001 - 2001
  • Triple Crown Award - St. Louis Children's Hospital2011
  • Digestive Diseases Research Center P&F Award2013 - 2015
  • Faculty Scholar - Children's Discovery Institute2014 - Pres
  • Nutrition & Obesity Research Center P&F Award2014 - Pres
  • Scholar - Child Health Research Center of Washington University School of Medicine2014 - Pres
  • Early Investigator Award - the Endocrine Society2015 - Pres
  • American Gastroenterological Association / Gilead Sciences Research Scholars Award in Liver Disease2015 - 2018
  • St. Louis Children's Hosptial Recognition Award2015
  • Robert Wood Johnson Foundation Scholar - Amos Medical Faculty Development Program2016 - Pres
  • United States Department of Defense Discovery Award2017 - Pres
  • Inductee, Society for Pediatric Research2018 - Pres
  • St. Louis Children's Hospital Triple Crown Award for Safe, Effective and Exceptional Patient Care2018 - 2018
  • Co-Inventor (Paul Hruz, MD, PhD), LEAP Inventor Challenge - Washington University School of Medicine Skandalaris Center: "Novel Treatment of Fatty Liver Disease"2018 - Pres
  • AGA/AASLD Young Investigator Conference Travel Award2018 - Pres
  • AGA-Allergan Foundation Pilot Research Award in Non-Alcoholic Fatty Liver Disease2019 - Pres
  • AGA-Allergan Pilot Research Award in Non-Alcoholic Fatty Liver Disease2019 - Pres
  • Gilead Sciences Cardiovascular Co-Morbidities Research Award2019 - Pres
  • Doris Duke Charitable Foundation Clinical Scientist Development Award2019 - Pres
  • Junior Faculty Award - American Federation for Aging Research2019 - Pres
  • Young Investigators Travel Award - The Obesity Society / NORC "Obesity Week" Scientific Sessions2019
  • Early Career Reviewer - NIH / CSR2020 - 2020
  • AGA Institute Research Awards Panel2020 - Pres
  • AASLD Pilot Research Award2020 - 2021

Recent Publications view all (32)


Publication Co-Authors

  1. Microbial and metabolic impacts of trehalose and trehalose analogues Gut Microbes. 2020;24:1-8. doi:doi: 10.1080/19490976.2020.1750273  PMID:32329657 
  2. Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology. 2019. doi:10.1053/j.gastro.2019.11.295.   PMID:31838076 
  3. Using trehalose to prevent and treat metabolic function: effectiveness and mechanisms Curr Opin Clin Nutr Metab Care. 2019. doi:10.1097/MCO.0000000000000568  PMID:31033580 
  4. Impaired Chylomicron Assembly Modifies Hepatic Metabolism Through Bile Acid-Dependent and Transmissible Microbial Adaptations. Hepatology. 2019;70(4):1168-1184. doi:10.1002/hep.30669  PMCID:PMC6783349  PMID:31004524 
  5. Hepatocyte Arginase 2 is sufficient to convey the therapeutic metabolic effects of fasting Nature Communications. 2019;10:1587. doi:0.1038/s41467-019-09642-8  PMID:30962478 
  6. Degradation-Resistant Trehalose Analogues Block Utilization of Trehalose by Hypervirulent Clostridioides difficile Chem Comm. 2019. doi:10.1039/C9CC01300H  
  7. Breath Collection from Children for Disease Biomarker Discovery J. Vis. Exp.. 2019; 144:e59217. doi:10.3791/59217  PMID:30829338 
  8. Maternal High-Fat, High-Sucrose Diet Induces Transgenerational Cardiac Mitochondrial Dysfunction Independent of Maternal Mitochondrial Inheritance AJP Heart Circ Physiol. 2019. doi:10.1152/ajpheart.00013.2019  PMID:30901280 
  9. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am J Physiol Renal Physiol. 2019. doi:10.1152/ajprenal.00133.2018  PMID:30724105 
  10. Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARγ. JCI Insight. 2018;3(16). PMCID:PMC6141168  PMID:30135298 
  11. Enhanced Hepatic PPARα Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology. 2018;159(5):2110-2126. PMID:29596655 
  12. Transcription Factor EB (TFEB)-dependent Induction of Thermogenesis by the Hepatocyte Solute Carrier 2A (SLC2A) inhibitor, Trehalose Autophagy. 2018. 
  13. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Sci Rep. 2016;6:38586. PMID:27922102 
  14. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal. 2016;9(416):ra21. PMCID:PMC4816640  PMID:26905426 
  15. Modeling the effect of cigarette smoke on hexose utilization in spermatocytes. Reprod Sci. 2015;22(1):94-101. doi:10.1177/1933719114533727  PMID:24803506 
  16. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun. 2014;5:4642. doi:10.1038/ncomms5642  PMCID:PMC4348061  PMID:25100214 
  17. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J Biol Chem. 2014;289(16):10989-98. doi:10.1074/jbc.M113.527002  PMCID:PMC4036240  PMID:24519932 
  18. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice. Mol Endocrinol. 2013;27(11):1887-96. doi:10.1210/me.2013-1137  PMCID:PMC3805847  PMID:24030250 
  19. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181-91. doi:10.1210/en.2012-1541  PMCID:PMC3423610  PMID:22822162 
  20. Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol. 2010;49(6):931-40. doi:10.1016/j.yjmcc.2010.08.011  PMCID:PMC2975863  PMID:20728450 
  21. TRB3 function in cardiac endoplasmic reticulum stress. Circ Res. 2010;106(9):1516-23. doi:10.1161/CIRCRESAHA.109.211920  PMCID:PMC2913227  PMID:20360254 
  22. Fetus-saving Caesarian rejection by pregnant woman: a case study. Surgery. 2009;145(1):6-8. PMID:19093328 
  23. Insulin signaling pathways and cardiac growth. J Mol Cell Cardiol. 2008;44(5):855-64. doi:10.1016/j.yjmcc.2008.03.008  PMCID:PMC2442827  PMID:18423486 
  24. The 14-3-3tau phosphoserine-binding protein is required for cardiomyocyte survival. Mol Cell Biol. 2007;27(4):1455-66. doi:10.1128/MCB.01369-06  PMCID:PMC1800730  PMID:17145769 
  25. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem. 2006;281(43):32841-51. doi:10.1074/jbc.M513087200  PMCID:PMC2724003  PMID:16950770 
  26. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097-104. doi:10.1161/CIRCULATIONAHA.105.595231  PMID:16636172 
  27. Role of Akt in cardiac growth and metabolism. Novartis Found Symp. 2006;274:118-26; discussion 126-31, 152-5, 272-6. PMID:17019809 
  28. Insulin-like growth factor-1 effects on bovine retinal endothelial cell glucose transport: role of MAP kinase. J Neurochem. 2002;81(4):728-34. PMID:12065632 
  29. Effects of insulin-like growth factor-1 on retinal endothelial cell glucose transport and proliferation. J Neurochem. 2001;77(4):1157-67. PMID:11359881 
  30. Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice Gastroenterology. 
  31. The hepatic fasting response is cardioprotective. JCI Insight. 
  32. Hepatocyte TFEB attenuates the pathological cardiac response to cardiac injury JCI Insight. 
Last updated: 06/15/2020
© 2020 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130