Toshifumi Sugatani, D.D.S., Ph.D.

Profile picture
Assistant Professor in Pediatrics, Nephrology

phone: (314) 286-1574


  • DDS, Asahi University School of Dentistry1991
  • PhD, Mie University, School of Medicine2003
  • DDS, Mie Univ School of Medicine1993
  • DDS, Mie University School of Medicine2002

Honors and Awards

  • American Society for Bone and Mineral Research Young Investigator Award2004
  • American Society for Bone and Mineral Research Travel Award2007
  • North American Grant Award (Exiqon)2009

Recent Publications view all (25)

Publication Co-Authors

  1. Systemic Activation of Activin A Signaling Causes Chronic Kidney Disease-Mineral Bone Disorder. Int J Mol Sci. 2018;19(9). PMID:30142896 
  2. The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int. 2017. PMID:28843411 
  3. The chronic kidney disease - Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone. 2017;100:80-86. PMCID:PMC5502716  PMID:28119179 
  4. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int. 2017;91(1):86-95. PMCID:PMC5530394  PMID:27666759 
  5. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int. 2016;89(6):1231-43. doi:10.1016/j.kint.2016.02.002.  PMID:27165838 
  6. SIRT6 deficiency culminates in low-turnover osteopenia. Bone. 2015;81:168-177. doi:10.1016/j.bone.2015.07.018  PMID:26189760 
  7. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens. 2015;24(4):303-9. PMCID:PMC4699443  PMID:26050115 
  8. CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol. 2014;25(8):1760-73. doi:10.1681/ASN.2013080818  PMCID:PMC4116062  PMID:24578135 
  9. Expression of DGCR8-dependent microRNAs is indispensable for osteoclastic development and bone-resorbing activity. J Cell Biochem. 2014;115(6):1043-7. doi:10.1002/jcb.24759  PMCID:PMC4079251  PMID:24420069 
  10. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142-50. doi:10.1038/ki.2013.271  PMCID:PMC3836911  PMID:23884339 
  11. Down-regulation of miR-21 biogenesis by estrogen action contributes to osteoclastic apoptosis. J Cell Biochem. 2013;114(6):1217-22. doi:10.1002/jcb.24471  PMID:23238785 
  12. Cardiovascular risk factors in chronic kidney disease: does phosphate qualify? Kidney Int Suppl. 2011;(121):S9-13. PMCID:PMC3260961  PMID:21346719 
  13. A microRNA expression signature of osteoclastogenesis. Blood. 2011;117(13):3648-57. doi:10.1182/blood-2010-10-311415  PMCID:PMC3072882  PMID:21273303 
  14. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem. 2009;284(7):4667-78. doi:10.1074/jbc.M805777200  PMCID:PMC2640963  PMID:19059913 
  15. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008;19(6):1092-105. doi:10.1681/ASN.2007070760  PMCID:PMC2396927  PMID:18417722 
  16. MicroRNA-223 is a key factor in osteoclast differentiation. J Cell Biochem. 2007;101(4):996-9. doi:10.1002/jcb.21335  PMID:17471500 
  17. Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem. 2005;280(5):3583-9. doi:10.1074/jbc.M410480200  PMID:15545269 
  18. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors. J Cell Biochem. 2003;90(1):59-67. doi:10.1002/jcb.10613  PMID:12938156 
  19. PTEN regulates RANKL- and osteopontin-stimulated signal transduction during osteoclast differentiation and cell motility. J Biol Chem. 2003;278(7):5001-8. doi:10.1074/jbc.M209299200  PMID:12460992 
  20. Effect of the phosphodiesterase 4 inhibitor, rolipram, on retinoic acid-increased alkaline phosphatase activity in the mouse fibroblastic C3H10T1/2 cell line. Arch Oral Biol. 2003;48(1):63-7. PMID:12615143 
  21. Expression of phosphodiesterase 3 in rat submandibular gland cell lines. Arch Oral Biol. 2001;46(5):453-7. PMID:11286810 
  22. Phosphodiesterase 3 as a potential target for therapy of malignant tumors in the submandibular gland. Anticancer Drugs. 2001;12(1):79-83. PMID:11272291 
  23. Expression of phosphodiesterase 3 in rat submandibular gland. Arch Oral Biol. 2000;45(12):1043-7. PMID:11084143 
  24. Kinky hair disease with multiple eruption cysts: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82(5):537-40. PMID:8936518 
  25. Myofibroma of the mandible. Clinicopathologic study and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80(3):303-9. PMID:7489274 
Last updated: 08/10/2020
© 2022 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130