Marcia C. Willing, M.D., Ph. D.  willing_m@kids.wustl.edu

Professor of Pediatrics, Department of Pediatrics, Division of Genetics and Genomic Medicine
Genetics and Genomic Medicine

phone: (314) 454-6093

Education

  • BA, Goucher College1976
  • MSc, University of Michigan1976
  • PhD, George Washington University and the NIH Cooperative Graduate Training Program1981
  • MD, Medical College of Virginia1982

Training

  • Pediatrics, Children’s Hospital Medical Center1982 - 1985
  • Medical Genetics, Univ of Washington1985 - 1988

Licensure and Board Certification

  • American Board of Pediatrics 1987
  • American Board of Medical Genetics 1990
  • IA, 1991
  • MO, Missouri State 2009

Honors

  • Hulda Irene Duggan Award, Arthritis Foundation1989
  • Carver Clinician Scientist Award, University of Iowa1991
  • Virginia P. Engalitcheff Award, Arthritis Foundation1994

Recent Publications view all (70)


Publication Co-Authors

  1. The Exome Clinic and the role of medical genetics expertise in the interpretation of exome sequencing results. Genet Med. 2017. PMID:28252636 
  2. Genetic Association of MMP10, MMP14, and MMP16 with Dental Caries. Int J Dent. 2017;2017:8465125. PMCID:PMC5350286  PMID:28348596 
  3. Variants in HNRNPH2 on the X Chromosome Are Associated with a Neurodevelopmental Disorder in Females. Am J Hum Genet. 2016. PMID:27545675 
  4. Pregnancy after aortic root replacement in Loeys-Dietz syndrome: High risk of aortic dissection. Am J Med Genet A. 2016;170(8):2177-80. PMID:27125181 
  5. Clinical Course of Six Children With GNAO1 Mutations Causing a Severe and Distinctive Movement Disorder. Pediatr Neurol. 2016;59:81-4. PMID:27068059 
  6. Multigenerational autosomal dominant inheritance of 5p chromosomal deletions. Am J Med Genet A. 2016;170(3):583-93. doi:10.1002/ajmg.a.37445  PMID:26601658 
  7. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum Mol Genet. 2016;25(1):202-9. PMCID:PMC4690498  PMID:26566670 
  8. De novo 9q gain in an infant with tetralogy of Fallot with absent pulmonary valve: Patient report and review of congenital heart disease in 9q duplication syndrome. Am J Med Genet A. 2015;167A(12):2966-74. PMID:26768185 
  9. Genetic Risk for Aortic Aneurysm in Adolescent Idiopathic Scoliosis. J Bone Joint Surg Am. 2015;97(17):1411-7. doi:10.2106/JBJS.O.00290  PMCID:PMC4551173  PMID:26333736 
  10. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures. Hum Genet. 2015;134(2):159-67. PMCID:PMC4293346  PMID:25373699 
  11. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet. 2015;96(1):170-7. PMCID:PMC4289682  PMID:25557781 
  12. Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet. 2014;23(19):5271-82. PMCID:PMC4159151  PMID:24833718 
  13. Genetic Association of MPPED2 and ACTN2 with Dental Caries. J Dent Res. 2014;93(7):626-632. doi:10.1177/0022034514534688  PMCID:PMCID: PMC4107549 [Available on 2015-07-01]  PMID:24810274 
  14. Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype. BMC Med Genet. 2013;14(10/08/14):106. doi:10.1186/1471-2350-14-106  PMCID:PMC3852179  PMID:24103465 
  15. Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome. Nat Genet. 2013;45(5):556-62. doi:10.1038/ng.2602  PMID:23542699 
  16. 2q24 deletions: further characterization of clinical findings and their relation to the SCN cluster. Am J Med Genet A. 2012;158A(11):2767-74. doi:10.1002/ajmg.a.35362  PMID:23023937 
  17. Genetic and environmental factors associated with dental caries in children: the Iowa Fluoride Study. Caries Res. 2012;46(3):177-84. doi:000337282  PMCID:PMC3580152  PMID:22508493 
  18. Genome-wide association scan for childhood caries implicates novel genes. J Dent Res. 2011;90(12):1457-62. doi:10.1177/0022034511422910  PMCID:PMC3215757  PMID:21940522 
  19. The microcephaly-capillary malformation syndrome. Am J Med Genet A. 2011;155A(9):2080-7. doi:10.1002/ajmg.a.34118  PMCID:PMC3428374  PMID:21815250 
  20. Clinical insights gained from eight new cases and review of reported cases with Jeune syndrome (asphyxiating thoracic dystrophy). Am J Med Genet A. 2011;155A(5):1021-32. doi:10.1002/ajmg.a.33892  PMID:21465651 
  21. TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res. 2010;88(3):520-9. doi:10.1093/cvr/cvq230  PMCID:PMC2972687  PMID:20628007 
  22. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010;42(6):1072-8. doi:10.1249/MSS.0b013e3181c619b2  PMCID:PMC2874089  PMID:19997029 
  23. A hip analysis protocol for pediatric bone densitometry: the Iowa Bone Development Study. J Clin Densitom. 2010;13(4):361-9. doi:10.1016/j.jocd.2010.06.003  PMCID:PMC3401562  PMID:20850364 
  24. Paucity of skeletal manifestations in Hispanic families with FBN1 mutations. Eur J Med Genet. 2010;53(2):80-4. doi:10.1016/j.ejmg.2009.11.001  PMID:19941982 
  25. Associations of fluoride intake with children's bone measures at age 11. Community Dent Oral Epidemiol. 2009;37(5):416-26. doi:10.1111/j.1600-0528.2009.00478.x  PMCID:PMC2765810  PMID:19740248 
  26. Analysis of multigenerational families with thoracic aortic aneurysms and dissections due to TGFBR1 or TGFBR2 mutations. J Med Genet. 2009;46(9):607-13. doi:10.1136/jmg.2008.062844  PMID:19542084 
  27. Sustained effect of early physical activity on body fat mass in older children. Am J Prev Med. 2009;37(1):35-40. doi:10.1016/j.amepre.2009.03.012  PMCID:PMC2760597  PMID:19423269 
  28. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84(5):617-27. doi:10.1016/j.ajhg.2009.04.007  PMCID:PMC2680995  PMID:19409525 
  29. Subjective and objective measures of physical activity in relationship to bone mineral content during late childhood: the Iowa Bone Development Study. Br J Sports Med. 2008;42(8):658-63. doi:10.1136/bjsm.2008.047779  PMID:18603581 
  30. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39(12):1488-93. doi:10.1038/ng.2007.6  PMID:17994018 
  31. Physical activity augments bone mineral accrual in young children: The Iowa Bone Development study. J Pediatr. 2006;148(6):793-9. doi:10.1016/j.jpeds.2006.01.045  PMID:16769389 
  32. Vitamin D receptor genotype and risk of osteoporotic hip fracture in elderly women of Utah: an effect modified by parity. Osteoporos Int. 2006;17(8):1146-53. doi:10.1007/s00198-006-0100-7  PMID:16758135 
  33. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation. 2005;112(4):513-20. doi:10.1161/CIRCULATIONAHA.105.537340  PMID:16027248 
  34. Percentile distributions of bone measurements in Iowa children: the Iowa Bone Development Study. J Clin Densitom. 2005;8(1):39-47. PMID:15722586 
  35. Heterogeneous basis of the type VIB form of Ehlers-Danlos syndrome (EDS VIB) that is unrelated to decreased collagen lysyl hydroxylation. Am J Med Genet A. 2004;131(2):155-62. doi:10.1002/ajmg.a.30302  PMID:15523625 
  36. Everyday activity predicts bone geometry in children: the iowa bone development study. Med Sci Sports Exerc. 2004;36(7):1124-31. PMID:15235315 
  37. Reduced type I collagen utilization: a pathogenic mechanism in COL5A1 haplo-insufficient Ehlers-Danlos syndrome. J Cell Biochem. 2004;92(1):113-24. doi:10.1002/jcb.20024  PMID:15095409 
  38. Estrogen receptor genotypes and their association with the 10-year changes in bone mineral density and osteocalcin concentrations. J Clin Endocrinol Metab. 2004;89(2):733-9. doi:10.1210/jc.2003-030691  PMID:14764789 
  39. Nonsyndromic genetic predisposition to aortic dissection: a newly recognized, diagnosable, and preventable occurrence in families. Ann Emerg Med. 2004;43(1):79-82. doi:10.1016/S0196064403008187  PMID:14707946 
  40. Gene polymorphisms, bone mineral density and bone mineral content in young children: the Iowa Bone Development Study. Osteoporos Int. 2003;14(8):650-8. doi:10.1007/s00198-003-1416-1  PMID:12879219 
  41. Mapping a locus for familial thoracic aortic aneurysms and dissections (TAAD2) to 3p24-25. Circulation. 2003;107(25):3184-90. doi:10.1161/01.CIR.0000078634.33124.95  PMID:12821554 
  42. Fatness, physical activity, and television viewing in children during the adiposity rebound period: the Iowa Bone Development Study. Prev Med. 2002;35(6):563-71. PMID:12460524 
  43. Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the triple helical domains of type I collagen chains disrupt helix formation and result in several types of osteogenesis imperfecta. Hum Mutat. 2001;18(4):319-26. doi:10.1002/humu.1193  PMID:11668615 
  44. Disruption of one intra-chain disulphide bond in the carboxyl-terminal propeptide of the proalpha1(I) chain of type I procollagen permits slow assembly and secretion of overmodified, but stable procollagen trimers and results in mild osteogenesis imperfecta. J Med Genet. 2001;38(7):443-9. PMCID:PMC1757177  PMID:11432962 
  45. Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics. 2001;107(6):1387-93. PMID:11389262 
  46. COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am J Hum Genet. 2000;66(6):1766-76. doi:10.1086/302930  PMCID:PMC1378044  PMID:10777716 
  47. Nonsense mutations in the COL1A1 gene preferentially reduce nuclear levels of mRNA but not hnRNA in osteogenesis imperfecta type I cell strains. Matrix Biol. 2000;19(1):1-9. PMID:10686420 
  48. Osteocalcin: genetic and physical mapping of the human gene BGLAP and its potential role in postmenopausal osteoporosis. Genomics. 1999;60(2):210-7. doi:10.1006/geno.1999.5893  PMID:10486212 
  49. Genetic markers, bone mineral density, and serum osteocalcin levels. J Bone Miner Res. 1999;14(8):1411-9. doi:10.1359/jbmr.1999.14.8.1411  PMID:10457274 
  50. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol. 1998;82(4):474-9. PMID:9723636 
  51. Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res. 1998;13(4):695-705. doi:10.1359/jbmr.1998.13.4.695  PMID:9556070 
  52. Mutations of the alpha2(V) chain of type V collagen impair matrix assembly and produce ehlers-danlos syndrome type I. Hum Mol Genet. 1998;7(2):249-55. PMID:9425231 
  53. Determinants of bone mineral density in postmenopausal white Iowans. J Gerontol A Biol Sci Med Sci. 1997;52(6):M337-42. PMID:9402939 
  54. A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet. 1996;5(11):1733-6. PMID:8923000 
  55. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996;59(4):799-809. PMCID:PMC1914787  PMID:8808594 
  56. Absence of mutations in the promoter of the COL1A1 gene of type I collagen in patients with osteogenesis imperfecta type I. J Med Genet. 1995;32(9):697-700. PMCID:PMC1051669  PMID:8544188 
  57. Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. Am J Hum Genet. 1994;55(4):638-47. PMCID:PMC1918287  PMID:7942841 
  58. Molecular heterogeneity in osteogenesis imperfecta type I. Am J Med Genet. 1993;45(2):223-7. doi:10.1002/ajmg.1320450214  PMID:8456806 
  59. Osteogenesis imperfecta type I is commonly due to a COL1A1 null allele of type I collagen. Am J Hum Genet. 1992;51(3):508-15. PMCID:PMC1682712  PMID:1353940 
  60. Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet. 1991;28(7):433-42. PMCID:PMC1016951  PMID:1895312 
  61. Osteogenesis imperfecta due to recurrent point mutations at CpG dinucleotides in the COL1A1 gene of type I collagen. Hum Genet. 1991;87(1):33-40. PMID:2037280 
  62. Distinct biochemical phenotypes predict clinical severity in nonlethal variants of osteogenesis imperfecta. Am J Hum Genet. 1990;46(5):975-82. PMCID:PMC1683590  PMID:2339695 
  63. Frameshift mutation near the 3' end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I. J Clin Invest. 1990;85(1):282-90. doi:10.1172/JCI114424  PMCID:PMC296416  PMID:2295701 
  64. Heterozygosity for a large deletion in the alpha 2(I) collagen gene has a dramatic effect on type I collagen secretion and produces perinatal lethal osteogenesis imperfecta. J Biol Chem. 1988;263(17):8398-404. PMID:3372533 
  65. Osteogenesis imperfecta: the molecular basis of clinical heterogeneity. Ann N Y Acad Sci. 1988;543:117-28. PMID:3063158 
  66. General strategies for isolating the genes encoding type I collagen and for characterizing mutations which produce osteogenesis imperfecta. Ann N Y Acad Sci. 1988;543:129-35. PMID:3063159 
  67. Regulation of human globin gene expression in mouse erythroleukemia x human fibroblast hybrid cells. Somatic Cell Genet. 1982;8(2):163-78. PMID:9732747 
  68. Selective activation of human beta-but not gamma-globin gene in human fibroblast x mouse erythroleukaemia cell hybrids. Nature. 1979;277(5697):534-8. PMID:283312 
  69. Maintenance of hemoglobin inducibility in somatic cell hybrids of tetraploid (2S) mouse erythroleukemia cells with mouse or human fibroblasts. Somatic Cell Genet. 1978;4(2):157-68. PMID:276093 
  70. SGPL1 mutations cause nephrosis with ichthyosis and adrenalinsufficiency Journal of Clinical Investigation. 1-31. 
Last updated: 08/29/2017
© 2017 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130