David Bark  bark@wustl.edu

Profile picture
Assistant Professor, Hematology and Oncology
Biomedical Engineering

phone: (314) 454-6018

Education

  • BS, University of Illinois at Urbana/Champaign2004
  • MS, Georgia Institute of Technology2007
  • PhD, Georgia Institute of Technology2010

Training

  • Research Fellow, University of Canterbury2010 - 2011
  • Research Fellow, Monash University2011 - 2013
  • Post-doctoral Fellow, Colorado State University2013 - 2016
  • Post-doctoral Fellow, University of Colorado2016

Honors and Awards

  • F32 Ruth L. Kirschstein National Research Service Award Individual Postdoctoral Fellowship2016 - 2017
  • Career Development Award, American Heart Association2018 - Pres

Recent Publications view all (23)


Publication Co-Authors

  1. Mechanical forces impacting cleavage of von Willebrand factor in laminar and turbulent blood flow Fluids. 2021;6(2):67. doi:https://doi.org/10.3390/fluids6020067  
  2. Standardization of blood flow conditions for in vitro haemostasis and arterial thrombosis studies: a review on wall shear rates in humans and mice. J Thromb Haemost. 2021;19(2):588-595. doi:https://doi.org/10.1111/jth.15174  
  3. Impact of superhydrophobicity on the fluid dynamics of a bileaflet mechanical heart valve. J Mech Behav Biomed Mater. 2020;110:103895. PMID:32957201 
  4. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development. Ann Biomed Eng. 2020. PMID:32959136 
  5. Right ventricle in hypoplastic left heart syndrome exhibits altered hemodynamics in the human fetus. J Biomech. 2020;112:110035. PMID:32971490 
  6. Pathologic Shear and Elongation Rates Do Not Cause Cleavage of Von Willebrand Factor by ADAMTS13 in a Purified System. Cell Mol Bioeng. 2020;13(4):379-390. PMCID:PMC7479076  PMID:32952737 
  7. Biomechanical Cues Direct Valvulogenesis. J Cardiovasc Dev Dis. 2020;7(2). PMCID:PMC7345189  PMID:32438610 
  8. Pilot-scale open-channel raceways and flat-panel photobioreactors maintain well-mixed conditions under a wide range of mixing energy inputs. Biotechnol Bioeng. 2020;117(4):959-969. PMID:31930483 
  9. Hemocompatibility of Super-Repellent surfaces: Current and Future. Mater Horiz. 2019;6(8):1596-1610. PMCID:PMC6941870  PMID:31903188 
  10. Turbulent Flow Promotes Cleavage of VWF (von Willebrand Factor) by ADAMTS13 (A Disintegrin and Metalloproteinase With a Thrombospondin Type-1 Motif, Member 13). Arterioscler Thromb Vasc Biol. 2019;39(9):1831-1842. PMID:31291760 
  11. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood. 2019;134(9):727-740. PMCID:PMC6716075  PMID:31311815 
  12. Human fetal hearts with tetralogy of Fallot have altered fluid dynamics and forces. Am J Physiol Heart Circ Physiol. 2018;315(6):H1649-H1659. PMID:30216114 
  13. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci Transl Med. 2017;9(409). PMID:28954929 
  14. Hemodynamic Performance and Thrombogenic Properties of a Superhydrophobic Bileaflet Mechanical Heart Valve. Ann Biomed Eng. 2017;45(2):452-463. PMCID:PMC5073049  PMID:27098219 
  15. Effect of Arched Leaflets and Stent Profile on the Hemodynamics of Tri-Leaflet Flexible Polymeric Heart Valves. Ann Biomed Eng. 2017;45(2):464-475. PMCID:PMC5159331  PMID:27307007 
  16. Mechanisms influencing retrograde flow in the atrioventricular canal during early embryonic cardiogenesis. J Biomech. 2016;49(14):3162-3167. PMID:27511597 
  17. Reynolds shear stress for textile prosthetic heart valves in relation to fabric design. J Mech Behav Biomed Mater. 2016;60:280-287. PMCID:PMC4885806  PMID:26919564 
  18. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics. Ann Biomed Eng. 2016;44(5):1425-35. PMCID:PMC4809800  PMID:26416720 
  19. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol. 2015;14(6):1379-89. PMID:25976479 
  20. Theory to predict shear stress on cells in turbulent blood flow. PLoS One. 2014;9(8):e105357. PMCID:PMC4149426  PMID:25171175 
  21. Platelet transport rates and binding kinetics at high shear over a thrombus. Biophys J. 2013;105(2):502-11. PMCID:PMC3714887  PMID:23870271 
  22. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol Bioeng. 2012;109(10):2642-50. PMID:22539078 
  23. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomech. 2010;43(15):2970-7. PMID:20728892 
Last updated: 06/15/2021
© 2021 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130