Thomas Ferkol, M.D.

Profile picture
Director, Division of Allergy, Immunology, and Pulmonary Medicine
Professor of Cell Biology and Physiology
Alexis Hartmann Professor of Pediatrics
Researcher, Pathobiology
Cell Biology & PhysiologyAllergy, Immunology and Pulmonary MedicinePathobiology

phone: (314) 454-2694

Clinical Interests

Thomas Ferkol, MD is the Alexis Hartmann Professor of Pediatrics, Professor of Cell Biology and Physiology, and Director of the multidisciplinary Division of Pediatric Allergy, Immunology, and Pulmonary Medicine at the Washington University School of Medicine. Dr. Ferkol graduated from Case Western Reserve University (Cleveland, Ohio) in 1981, and he received his M.D. degree from the Ohio State University College of Medicine (Columbus, Ohio) in 1985. He was a pediatric resident at the University of North Carolina at Chapel Hill (1985-1988), where he also served as Chief Resident and Clinical Instructor (1988-1989). Dr. Ferkol returned to Case Western Reserve University in 1989 for fellowship training in pediatric pulmonology, and subsequently joined the faculty of Case Western Reserve University and Rainbow Babies and Children’s Hospital. Dr. Ferkol moved to Washington University School of Medicine in 2000, where he is currently Director of the Division of Pediatric Allergy, Immunology, and Pulmonary Medicine. He is the past director of the comprehensive Washington University Cystic Fibrosis Center, and directed premier clinical and research programs in cystic fibrosis. The Center is a member of the Cystic Fibrosis Foundation Therapeutics Development Network. An American Lung Association Edward Livingston Trudeau Scholar and recipient of the Cystic Fibrosis Foundation (CFF) LeRoy Matthew’s Physician-Scientist Award, his research has focused on characterizing genetic and molecular factors that contribute to lung disease in cystic fibrosis and primary ciliary dyskinesia. With past and continued support from the National Institutes of Health (NIH), CFF, and March of Dimes, Dr. Ferkol and his collaborators are studying the origins and potential therapeutic targets for these inherited airway diseases. He is an investigator for the NIH-supported Genetic Diseases of Mucociliary Clearance Consortium, and has assembled clinical, biomedical, and engineering research collaborative at Washington University, studying the genetic and phenotypic spectrum of ciliopathies. He is also co-principal investigator on a NIH-funded program that is examining adverse respiratory outcomes in children with chronic lung disease related to prematurity. Dr. Ferkol has been an active member of the American Thoracic Society (ATS), serving as the chair of the Scientific Assembly on Pediatrics and chair of its program committee. He was recently installed as president of the ATS, only the second pediatrician in the 110 years of the Society. He has been a member of several scientific review groups, including the NIH Gene and Drug Delivery Study Section, ATS Career Development Grants Review Committee, CFF Research Development Program Review Committee and CFF Functional Genomics Review Committee. Finally, he serves as a member of the American Board of Pediatrics Subboard of Pediatric Pulmonology.


  • BA, magna cum laude, Case Western Reserve University1981
  • MB, University of Nottingham, School of Biological Sciences1980
  • MD, Medicinae doctor, The Ohio State University College of Medicine1985


  • Intern, University of North Carolina at Chapel Hill1985 - 1986
  • Resident, University of North Carolina at Chapel Hill1986 - 1988
  • Chief Resident, University of North Carolina at Chapel Hill1988 - 1989
  • Pulmonology Fellow, Case Western Reserve University School of Medicine1989 - 1992

Licensure and Board Certification

  • Medical License, State of Missouri (current)
  • Medical License, State of North Carolina (expired voluntarily)
  • Medical License, State of Ohio (expired voluntarily)
  • National Board of Medical Examiners, Diplomate
  • US Drug Enforcement Agency, Certified
  • American Board of Pediatrics, General Pediatrics Diplomate, Certified (Re-certified, 1998, 2005) 1990
  • American Board of Pediatrics, Pediatric Pulmonology Subboard Diplomate (Re-certified, 2002, 2009) 1994


  • Cystic Fibrosis Foundation LeRoy Matthews Physician-Scientist Award1989
  • Floyd Denny Pediatric Alumni Society Award, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina1989
  • Rainbow Babies and Children’s Hospital Trustees New Investigator Award1992
  • American Lung Association Edward Livingston Trudeau Scholar1994
  • Teaching Excellence Award, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio1994
  • Society for Pediatric Research, member1997
  • Best Doctors of America®1998 - Pres
  • EDI Innovation Award.1999
  • European Cystic Fibrosis Conference Presentation Award2004
  • America's Top Pediatricians, Consumer's Research Council of America2006 - Pres
  • American Pediatric Society, member2009 - Pres
  • Alexis Hartmann MD Professorship Award2012

Recent Publications view all (138)

  1. Bronchopulmonary Dysplasia and Perinatal Characteristics Predict 1-Year Respiratory Outcomes in Newborns Born at Extremely Low Gestational Age: A Prospective Cohort Study. J Pediatr. 2017;187:89-97.e3. PMCID:PMC5533632  PMID:28528221 
  2. Association of Antibiotics, Airway Microbiome and Inflammation in Infants with Cystic Fibrosis. Ann Am Thorac Soc. 2017. PMID:28708417 
  3. The lower airway microbiota in early cystic fibrosis lung disease: a longitudinal analysis. Thorax. 2017. PMID:28280235 
  4. Thoracoabdominal Asynchrony Is Not Associated with Oxyhemoglobin Saturation in Recovering Premature Infants. Neonatology. 2017;111(4):297-302. PMCID:PMC5443694  PMID:28013296 
  5. Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents. Ann Am Thorac Soc. 2016;13(8):1305-13. PMID:27070726 
  6. Primary Ciliary Dyskinesia: First Health-related Quality of Life Measures for Pediatric Patients. Ann Am Thorac Soc. 2016. PMID:27464304 
  7. Primary ciliary dyskinesia and associated sensory ciliopathies. Expert Rev Respir Med. 2016;10(5):569-76. PMCID:PMC4893162  PMID:26967669 
  8. An Official American Thoracic Society Clinical Practice Guideline: Pediatric Chronic Home Invasive Ventilation. Am J Respir Crit Care Med. 2016;193(8):e16-35. PMID:27082538 
  9. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev. 2016;18:18-24. PMCID:PMC4864047  PMID:26476603 
  10. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 2016;51(2):115-32. PMCID:PMC4912005  PMID:26418604 
  11. Forced Expiratory Volume in 1 Second Variability Helps Identify Patients with Cystic Fibrosis at Risk of Greater Loss of Lung Function. J Pediatr. 2016;169:116-21.e2. PMID:26388208 
  12. Decade of the lung--a call for action to promote lung health globally. Lancet Respir Med. 2016;4(1):e3-4. PMID:26762667 
  13. Comparisons and Limitations of Current Definitions of Bronchopulmonary Dysplasia for the Prematurity and Respiratory Outcomes Program. Ann Am Thorac Soc. 2015;12(12):1822-30. PMCID:PMC4722827  PMID:26397992 
  14. Precision Medicine: At What Price? Am J Respir Crit Care Med. 2015;192(6):658-9. PMID:26207804 
  15. Outcomes and Treatment of Chronic Methicillin-Resistant Staphylococcus aureus Differs by Staphylococcal Cassette Chromosome mec (SCCmec) Type in Children With Cystic Fibrosis. J Pediatric Infect Dis Soc. 2015;4(3):225-31. PMCID:PMC4554198  PMID:26336603 
  16. Early Childhood Risk Factors for Decreased FEV1 at Age Six to Seven Years in Young Children with Cystic Fibrosis. Ann Am Thorac Soc. 2015;12(8):1170-6. PMCID:PMC4566413  PMID:26288390 
  17. Risk factors for lung function decline in a large cohort of young cystic fibrosis patients. Pediatr Pulmonol. 2015;50(8):763-70. PMID:26061914 
  18. Such Are the Impositions of Quackery: E-Cigarettes. Ann Am Thorac Soc. 2015;12(6):787-8. PMID:26075549 
  19. Respiratory consequences of prematurity: evolution of a diagnosis and development of a comprehensive approach. J Perinatol. 2015;35(5):313-21. doi:10.1038/jp.2015.19  PMCID:PMC4414744  PMID:25811285 
  20. Ventilatory control and supplemental oxygen in premature infants with apparent chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2015;100(3):F233-7. doi:10.1136/archdischild-2014-307272  PMID:25716677 
  21. Official American Thoracic Society technical standards: flexible airway endoscopy in children. Am J Respir Crit Care Med. 2015;191(9):1066-80. doi:10.1164/rccm.201503-0474ST  PMID:25932763 
  22. Prematurity and respiratory outcomes program (PROP): study protocol of a prospective multicenter study of respiratory outcomes of preterm infants in the United States. BMC Pediatr. 2015;15(1):37. doi:10.1186/s12887-015-0346-3  PMCID:PMC4407843  PMID:25886363 
  23. Bronchiolitis obliterans syndrome is not specific for bronchiolitis obliterans in pediatric lung transplant. J Heart Lung Transplant. 2015;34(4):516-21. doi:10.1016/j.healun.2014.10.004  PMID:25499141 
  24. The Evolution of Cystic Fibrosis Care. Chest. 2015. doi:10.1378/chest.14-1997  PMID:25764168 
  25. Multicenter Observational Study on Factors and Outcomes Associated with Various Methicillin-Resistant Staphylococcus aureus Types in Children with Cystic Fibrosis. Ann Am Thorac Soc. 2015. doi:10.1513/AnnalsATS.201412-596OC  PMID:25745825 
  26. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191(3):316-24. doi:10.1164/rccm.201409-1672OC  PMCID:PMC4351577  PMID:25493340 
  27. Clinical outcomes after initial pseudomonas acquisition in cystic fibrosis. Pediatr Pulmonol. 2015;50(1):42-8. doi:10.1002/ppul.23036  PMID:24644274 
  28. Serology as a diagnostic tool for predicting initialPseudomonas aeruginosa acquisition in children with cystic fibrosis. J Cyst Fibros. 2014;13(5):542-9. doi:10.1016/j.jcf.2014.06.005  PMID:25027419 
  29. Sources of methodological variability in phase angles from respiratory inductance plethysmography in preterm infants. Ann Am Thorac Soc. 2014;11(5):753-60. doi:10.1513/AnnalsATS.201310-363OC  PMID:24716708 
  30. L-plastin is essential for alveolar macrophage production and control of pulmonary pneumococcal infection. Infect Immun. 2014;82(5):1982-93. doi:10.1128/IAI.01199-13  PMCID:PMC3993441  PMID:24595139 
  31. The global burden of respiratory disease-impact on child health. Pediatr Pulmonol. 2014;49(5):430-4. doi:10.1002/ppul.23030  PMID:24610581 
  32. Cystic fibrosis: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc. 2014;11 Suppl 3:S161-8. doi:10.1513/AnnalsATS.201312-444LD  PMID:24754825 
  33. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med. 2014;189(6):707-17. doi:10.1164/rccm.201311-2047OC  PMCID:PMC3983840  PMID:24568568 
  34. The global burden of respiratory disease. Ann Am Thorac Soc. 2014;11(3):404-6. doi:10.1513/AnnalsATS.201311-405PS  PMID:24673696 
  35. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest. 2014. doi:10.1378/chest.13-1704  PMID:24577564 
  36. Picking up speed: advances in the genetics of primary ciliary dyskinesia. Pediatr Res. 2014;75(1-2):158-64. doi:10.1038/pr.2013.200  PMCID:PMC3946436  PMID:24192704 
  37. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann Am Thorac Soc. 2013;10(6):574-81. doi:10.1513/AnnalsATS.201305-110OC  PMCID:PMC3960971  PMID:24024753 
  38. Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications. Thorax. 2013;68(12):1157-62. doi:10.1136/thoraxjnl-2013-203204  PMID:23704228 
  39. FDG PET imaging in cystic fibrosis. Semin Nucl Med. 2013;43(6):412-9. doi:10.1053/j.semnuclmed.2013.06.002  PMID:24094708 
  40. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet. 2013;93(4):711-20. doi:10.1016/j.ajhg.2013.07.025  PMCID:PMC3791252  PMID:24055112 
  41. Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. Am J Hum Genet. 2013;93(4):672-86. doi:10.1016/j.ajhg.2013.08.015  PMCID:PMC3791264  PMID:24094744 
  42. Probability of treatment following acute decline in lung function in children with cystic fibrosis is related to baseline pulmonary function. J Pediatr. 2013;163(4):1152-7.e2. doi:10.1016/j.jpeds.2013.05.013  PMCID:PMC4064589  PMID:23810128 
  43. Standard care versus protocol based therapy for new onset Pseudomonas aeruginosa in cystic fibrosis. Pediatr Pulmonol. 2013;48(10):943-53. doi:10.1002/ppul.22693  PMCID:PMC4059359  PMID:23818295 
  44. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013;8(8):e72299. doi:10.1371/journal.pone.0072299  PMCID:PMC3753302  PMID:23991085 
  45. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336-45. doi:10.1016/j.ajhg.2013.06.007  PMCID:PMC3738827  PMID:23891469 
  46. Primary ciliary dyskinesia-causing mutations in Amish and Mennonite communities. J Pediatr. 2013;163(2):383-7. doi:10.1016/j.jpeds.2013.01.061  PMCID:PMC3725203  PMID:23477994 
  47. Identifying the origins of cystic fibrosis lung disease. N Engl J Med. 2013;368(21):2026-8. doi:10.1056/NEJMe1303487  PMID:23692172 
  48. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat. 2013;34(3):462-72. doi:10.1002/humu.22261  PMCID:PMC3630464  PMID:23255504 
  49. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92(1):99-106. doi:10.1016/j.ajhg.2012.11.003  PMCID:PMC3542458  PMID:23261302 
  50. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013;8(3):e59436. doi:10.1371/journal.pone.0059436  PMCID:PMC3602302  PMID:23527195 
  51. The impact of the Clean Air Act. J Pediatr. 2012;161(5):781-6. doi:10.1016/j.jpeds.2012.06.064  PMID:22920509 
  52. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2012;91(4):685-93. doi:10.1016/j.ajhg.2012.08.022  PMCID:PMC3484505  PMID:23040496 
  53. Risk factors for age at initial Pseudomonas acquisition in the cystic fibrosis epic observational cohort. J Cyst Fibros. 2012;11(5):446-53. doi:10.1016/j.jcf.2012.04.003  PMID:22554417 
  54. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet. 2012;44(8):886-9. doi:10.1038/ng.2344  PMCID:PMC3702264  PMID:22772370 
  55. Chest computed tomography scores are predictive of survival in patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med. 2012;185(10):1096-103. doi:10.1164/rccm.201111-2065OC  PMID:22403801 
  56. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67(5):433-41. doi:10.1136/thoraxjnl-2011-200301  PMID:22184204 
  57. Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr. 2012;160(3):366-71. doi:10.1016/j.jpeds.2011.11.024  PMCID:PMC3282141  PMID:22177992 
  58. Initial Pseudomonas aeruginosa treatment failure is associated with exacerbations in cystic fibrosis. Pediatr Pulmonol. 2012;47(2):125-34. doi:10.1002/ppul.21525  PMCID:PMC3214247  PMID:21830317 
  59. Recurrent pleural effusion without intrathoracic migration of ventriculoperitoneal shunt catheter: a case report. Pediatr Pulmonol. 2012;47(1):91-5. doi:10.1002/ppul.21510  PMID:22170808 
  60. Socioeconomic status and the likelihood of antibiotic treatment for signs and symptoms of pulmonary exacerbation in children with cystic fibrosis. J Pediatr. 2011;159(5):819-824.e1. doi:10.1016/j.jpeds.2011.05.005  PMID:21705017 
  61. The emerging genetics of primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8(5):430-3. doi:10.1513/pats.201103-023SD  PMCID:PMC3209577  PMID:21926394 
  62. Effect of polarized release of CXC-chemokines from wild-type and cystic fibrosis murine airway epithelial cells. Am J Respir Cell Mol Biol. 2011;45(2):221-8. doi:10.1165/rcmb.2009-0249OC  PMCID:PMC3266059  PMID:20639462 
  63. Comparative efficacy and safety of four randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis Archives of Pediatrics and Adolsescent Medicine. 2011;165(847):856. 
  64. Diagnostic yield of nasal scrape biopsies in primary ciliary dyskinesia: a multicenter experience. Pediatr Pulmonol. 2011;46(483):488. doi:10.1002/ppul.21402  PMID:21284095 
  65. Hitting the target: new treatments for cystic fibrosis. Am J Respir Crit Care Med. 2010;182(12):1460-1. doi:10.1164/rccm.201008-1311ED  PMID:21159902 
  66. Baseline characteristics and factors associated with nutritional and pulmonary status at enrollment in the cystic fibrosis EPIC observational cohort. Pediatr Pulmonol. 2010;45(9):934-44. doi:10.1002/ppul.21279  PMID:20597081 
  67. Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med. 2010;182(3):298-306. doi:10.1164/rccm.201002-0157OC  PMID:20675678 
  68. Primary ciliary dyskinesia in Amish communities. J Pediatr. 2010;156(6):1023-5. doi:10.1016/j.jpeds.2010.01.054  PMCID:PMC2875274  PMID:20350728 
  69. IL-10 delivery by AAV5 vector attenuates inflammation in mice with Pseudomonas pneumonia. Gene Ther. 2010;17(5):567-76. doi:10.1038/gt.2010.28  PMID:20357828 
  70. Airway proteins involved in bacterial clearance susceptible to cathepsin G proteolysis. Eur Respir J. 2010;35(2):410-7. doi:10.1183/09031936.00020809  PMCID:PMC2818476  PMID:19679607 
  71. Pediatric respiratory medicine--an international perspective. Pediatr Pulmonol. 2010;45(1):14-24. doi:10.1002/ppul.21165  PMID:20014351 
  72. Acquired monosomy 7 myelodysplastic syndrome in a child with clinical features suggestive of dyskeratosis congenita and IMAGe association. Pediatr Blood Cancer. 2010;54(1):154-7. doi:10.1002/pbc.22283  PMID:19760774 
  73. NHLBI training workshop report: The vanishing pediatric pulmonary investigator and recommendations for recovery. Pediatr Pulmonol. 2010;45(1):25-33. doi:10.1002/ppul.21155  PMID:20025052 
  74. Aquagenic wrinkling of the palms in cystic fibrosis: comparison with controls and genotype-phenotype correlations. Arch Dermatol. 2009;145(11):1296-9. doi:10.1001/archdermatol.2009.260  PMID:19917960 
  75. Association of socioeconomic status with the use of chronic therapies and healthcare utilization in children with cystic fibrosis. J Pediatr. 2009;155(5):634-9.e1-4. doi:10.1016/j.jpeds.2009.04.059  PMID:19608199 
  76. [18F]fluorodeoxyglucose positron emission tomography for lung antiinflammatory response evaluation. Am J Respir Crit Care Med. 2009;180(6):533-9. doi:10.1164/rccm.200904-0501OC  PMCID:PMC2742744  PMID:19574441 
  77. Genetic modifiers of liver disease in cystic fibrosis. JAMA. 2009;302(10):1076-83. doi:10.1001/jama.2009.1295  PMID:19738092 
  78. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11(7):473-87. doi:10.1097/GIM.0b013e3181a53562  PMID:19606528 
  79. Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale and design of the EPIC clinical trial and observational study'. Contemp Clin Trials. 2009;30(3):256-68. doi:10.1016/j.cct.2009.01.003  PMCID:PMC2783320  PMID:19470318 
  80. NHLBI training workshop report: the vanishing pediatric pulmonary investigator and recommendations for recovery. Lung. 2009;187(6):367-74. doi:10.1007/s00408-009-9184-0  PMID:19806399 
  81. Modulation of cystic fibrosis lung disease by variants in interleukin-8 Genes and Immunity. 2008;9(501):508. 
  82. Airway inflammation in cystic fibrosis. Chest. 2008;133(2):489-95. doi:10.1378/chest.07-1631  PMID:18252915 
  83. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther. 2007;18(8):726-32. doi:10.1089/hum.2007.022  PMID:17685853 
  84. Transmission of Panton-Valentine leukocidin-positive Staphylococcus aureus between patients with cystic fibrosis. J Pediatr. 2007;151(1):90-2. doi:10.1016/j.jpeds.2007.04.016  PMID:17586197 
  85. Panton-Valentine Leukocidin-positive methicillin-resistant Staphylococcus aureus lung infection in patients with cystic fibrosis. Chest. 2007;131(6):1718-25. doi:10.1378/chest.06-2756  PMID:17400676 
  86. Regulation of systemic and local neutrophil responses by G-CSF during pulmonary Pseudomonas aeruginosa infection. Blood. 2007;109(8):3235-43. doi:10.1182/blood-2005-01-015081  PMCID:PMC1852251  PMID:17185469 
  87. Use of high-dose ibuprofen in a pediatric cystic fibrosis center. J Cyst Fibros. 2007;6(2):153-8. doi:10.1016/j.jcf.2006.06.003  PMID:16844429 
  88. Cathepsin-G interferes with clearance of Pseudomonas aeruginosa from mouse lungs. Pediatr Res. 2007;61(1):26-31. doi:10.1203/01.pdr.0000250043.90468.c2  PMID:17211136 
  89. Primary ciliary dyskinesia: recent advances in pathogenesis, diagnosis and treatment. Drugs. 2007;67(13):1883-92. PMID:17722956 
  90. Primary ciliary dyskinesia and newborn respiratory distress. Semin Perinatol. 2006;30(6):335-40. doi:10.1053/j.semperi.2005.11.001  PMID:17142159 
  91. Growth hormone treatment improves growth and clinical status in prepubertal children with cystic fibrosis: results of a multicenter randomized controlled trial. J Clin Endocrinol Metab. 2006;91(12):4925-9. doi:10.1210/jc.2006-1101  PMID:17018651 
  92. Movement: the emerging genetics of primary ciliary dyskinesia. Am J Respir Crit Care Med. 2006;174(2):109-10. doi:10.1164/rccm.2604002  PMID:16822932 
  93. Quantifying pulmonary inflammation in cystic fibrosis with positron emission tomography. Am J Respir Crit Care Med. 2006;173(12):1363-9. doi:10.1164/rccm.200506-934OC  PMCID:PMC2662975  PMID:16543553 
  94. Current issues in the basic mechanisms, pathophysiology, diagnosis, and management of primary ciliary dyskinesia European Respiratory Monograph. 2006;37(291):313. 
  95. Cystic fibrosis pulmonary exacerbations. J Pediatr. 2006;148(2):259-64. doi:10.1016/j.jpeds.2005.10.019  PMID:16492439 
  96. Energy cost of activity and exercise in children and adolescents with cystic fibrosis. J Cyst Fibros. 2006;5(1):53-8. doi:10.1016/j.jcf.2005.10.001  PMID:16360343 
  97. Enhancing rAAV vector expression in the lung. J Gene Med. 2005;7(7):842-50. doi:10.1002/jgm.759  PMID:15838934 
  98. A retrospective study of growth hormone use in adolescents with cystic fibrosis. Clin Endocrinol (Oxf). 2005;62(5):560-6. doi:10.1111/j.1365-2265.2005.02259.x  PMID:15853825 
  99. Growth hormone treatment enhances nutrition and growth in children with cystic fibrosis receiving enteral nutrition. J Pediatr. 2005;146(3):324-8. doi:10.1016/j.jpeds.2004.10.037  PMID:15756212 
  100. NF-kappaB activation and sustained IL-8 gene expression in primary cultures of cystic fibrosis airway epithelial cells stimulated with Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol. 2005;288(3):L471-9. doi:10.1152/ajplung.00066.2004  PMID:15516493 
  101. Genetic modifiers of lung disease in cystic fibrosis N Engl J Med. 2005;353(1443):1453. 
  102. Effect of Pseudomonas-induced chronic lung inflammation on specific cytotoxic T-cell responses to adenoviral vectors in mice. Gene Ther. 2004;11(19):1427-33. doi:10.1038/  PMID:15295614 
  103. Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector. Hum Gene Ther. 2004;15(9):832-41. doi:10.1089/hum.2004.15.832  PMID:15353038 
  104. Lung function decline in cystic fibrosis patients and timing for lung transplantation referral. Chest. 2004;126(2):412-9. doi:10.1378/chest.126.2.412  PMID:15302726 
  105. Molecular imaging for pediatric lung diseases. Pediatr Pulmonol. 2004;37(4):286-96. doi:10.1002/ppul.20024  PMID:15022124 
  106. Delivery of CFTR by adenoviral vector to cystic fibrosis mouse lung in a model of chronic Pseudomonas aeruginosa lung infection. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L717-26. doi:10.1152/ajplung.00227.2003  PMID:14514520 
  107. Repetitive imaging of reporter gene expression in the lung. Mol Imaging. 2003;2(4):342-9. PMID:14717333 
  108. Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts. Am J Respir Crit Care Med. 2003;167(10):1374-9. doi:10.1164/rccm.200209-1119OC  PMID:12615618 
  109. Imaging pulmonary gene expression with positron emission tomography. Am J Respir Crit Care Med. 2003;167(9):1257-63. doi:10.1164/rccm.200210-1217OC  PMID:12505860 
  110. Imaging lung inflammation in a murine model of Pseudomonas infection: a positron emission tomography study. Exp Lung Res. 2003;29(45):57. 
  111. Inflammatory response in airway epithelial cells isolated from patients with cystic fibrosis. Am J Respir Crit Care Med. 2002;166(9):1248-56. doi:10.1164/rccm.200206-627OC  PMID:12403695 
  112. Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor. Mol Ther. 2002;5(4):413-9. doi:10.1006/mthe.2002.0556  PMID:11945068 
  113. IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J Immunol. 2001;167(5):2816-23. PMID:11509627 
  114. Chinks in the armor of the airway: Pseudomonas infection in the cystic fibrosis lung. Am J Respir Cell Mol Biol. 2001;25(1):11-3. doi:10.1165/ajrcmb.25.1.f212  PMID:11472969 
  115. Nitric oxide deficiency contributes to impairment of airway relaxation in cystic fibrosis mice. Am J Respir Cell Mol Biol. 2001;24(5):621-6. doi:10.1165/ajrcmb.24.5.4313  PMID:11350833 
  116. Single chain Fv: a ligand in receptor-mediated gene delivery. Gene Ther. 2001;8(8):586-92. doi:10.1038/  PMID:11320404 
  117. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol. 2000;74(18):8635-47. PMCID:PMC102071  PMID:10954565 
  118. Transport of bifunctional proteins across respiratory epithelial cells via the polymeric immunoglobulin receptor. Am J Respir Crit Care Med. 2000;161(3 Pt 1):944-51. doi:10.1164/ajrccm.161.3.9907018  PMID:10712347 
  119. Effect of Pseudomonas infection on weight loss, lung mechanics, and cytokines in mice. Am J Respir Crit Care Med. 2000;161(1):271-9. doi:10.1164/ajrccm.161.1.9903019  PMID:10619831 
  120. In vitro transport of active alpha(1)-antitrypsin to the apical surface of epithelia by targeting the polymeric immunoglobulin receptor. Am J Respir Cell Mol Biol. 1999;21(2):246-52. doi:10.1165/ajrcmb.21.2.3687  PMID:10423408 
  121. Pitfall in the use of genotype analysis as the sole diagnostic criterion for cystic fibrosis. Pediatrics. 1999;103(4 Pt 1):823-6. PMID:10103316 
  122. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. J Biol Chem. 1999;274(8):4908-16. PMID:9988733 
  123. Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells. Gene Ther. 1998;5(12):1685-97. doi:10.1038/  PMID:10023448 
  124. Transfer of the human Alpha1-antitrypsin gene into pulmonary macrophages in vivo. Am J Respir Cell Mol Biol. 1998;18(5):591-601. doi:10.1165/ajrcmb.18.5.2874  PMID:9569229 
  125. Effects of bronchopulmonary inflammation induced by pseudomonas aeruginosa on adenovirus-mediated gene transfer to airway epithelial cells in mice. Gene Ther. 1998;5(3):345-51. doi:10.1038/  PMID:9614554 
  126. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest. 1997;100(11):2810-5. doi:10.1172/JCI119828  PMCID:PMC508486  PMID:9389746 
  127. Gene transfer into hepatoma cell lines via the serpin enzyme complex receptor. Am J Physiol. 1997;273(2 Pt 1):G545-52. PMID:9277436 
  128. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor. J Biol Chem. 1997;272(11):7398-407. PMID:9054440 
  129. Genetic therapy. Past, present, and future. Pediatr Clin North Am. 1997;44(1):153-78. PMID:9057789 
  130. Immunologic responses to gene transfer into mice via the polymeric immunoglobulin receptor. Gene Ther. 1996;3(8):669-78. PMID:8854092 
  131. Receptor-mediated gene transfer into macrophages. Proc Natl Acad Sci U S A. 1996;93(1):101-5. PMCID:PMC40186  PMID:8552583 
  132. Gene transfer into the airway epithelium of animals by targeting the polymeric immunoglobulin receptor. J Clin Invest. 1995;95(2):493-502. doi:10.1172/JCI117690  PMCID:PMC295497  PMID:7860731 
  133. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur J Biochem. 1994;226(2):255-66. PMID:8001543 
  134. Gene transfer in vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake. Proc Natl Acad Sci U S A. 1994;91(9):4086-90. PMCID:PMC43728  PMID:8171039 
  135. Accuracy of the clinical examination in detecting hypoxemia in infants with respiratory illness. J Pediatr. 1994;124(4):552-60. PMID:8151469 
  136. Sinopulmonary manifestations of congenital bronchobiliary fistula. Clin Pediatr (Phila). 1994;33(3):181-4. PMID:8194299 
  137. Gene transfer into respiratory epithelial cells by targeting the polymeric immunoglobulin receptor. J Clin Invest. 1993;92(5):2394-400. doi:10.1172/JCI116845  PMCID:PMC288422  PMID:8227356 
  138. Regulation of the phosphoenolpyruvate carboxykinase/human factor IX gene introduced into the livers of adult rats by receptor-mediated gene transfer. FASEB J. 1993;7(11):1081-91. PMID:8370479 
Last updated: 08/16/2017
© 2018 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130