Robert O. Heuckeroth, M.D., Ph.D.  heuckeroth@kids.wustl.edu

Professor of Developmental, Regenerative and Stem Cell Biology
Alumni Endowed Professor of Pediatrics
Pediatrics

phone: (314) 454-6005

Education

  • BS, Summa Cum Laude with high honors in Chemistry, University of Maryland1983
  • PhD, Washington University School of Medicine1990
  • MD, Washington Universty School of Medicine1990

Training

  • Resident, St. Louis Children's Hospital1990 - 1992
  • Clinical Fellowship, St. Louis Children's Hospital1992 - 1993
  • Research Fellowship, Washington University School of Medicine1993 - 1995

Licensure and Board Certification

  • MO, 1994
  • American Board of Pediatrics 1996
  • American Board of Pediatrics, Subspecialty boards in Pediatric Gastroenterology 2009

Honors

  • Chancellor's Scholarship, University of Maryland1978
  • Phi Mu Epsilon, University of Maryland1980
  • Phi Kappa Phi, University of Maryland1981
  • General Honors Program Sklar Award for Scholarship and Service, University of Maryland1982
  • Kebar S. Chouke Prize and George F. Gill Prize in Anatomy, Washington University School of Medicine1984
  • Olin Fellowship, Washington University School of Medicine1988
  • Gerty T. Cori Fellowship Award, Washington University School of Medicine1989
  • Alpha Omega Alpha1990
  • George F. Gill Prize in Pediatrics1990
  • George F. Gill Prize in Pediatrics1990
  • Lucille P. Markey Charitable Trust Fellowship Award1993
  • North American Society of Pediatric Gastroenterology & Nutrition Young Investigator Award1995
  • Miles and Shirley Fiterman Foundation Basic Sciences Research Award1998
  • Glaxo Wellcome Institute for Digestive Health, Basic Research Award1999
  • Society for Pediatric Research2000
  • Best Doctors in America2007 - 2011
  • American Society for Clinical Investigation2008
  • Burroughs Wellcome Fund Clinical Scientist Award in Translational Research2009
  • Aumni Endowed Professor of Pediatrics2013

Recent Publications view all (46)


Publication Co-Authors

  1. Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am J Physiol Gastrointest Liver Physiol. 2012;302(10):G1143-50. doi:10.1152/ajpgi.00296.2011  PMCID:PMC3362098  PMID:22421622 
  2. Hypothyroidism is a rare cause of isolated constipation. J Pediatr Gastroenterol Nutr. 2012;54(2):285-7. doi:10.1097/MPG.0b013e318239714f  PMID:21975961 
  3. In Reply To: Slow Growth: Do Not Forget Thyroid J Pediatr Gastroenterol Nutr. 2011. PMID:22108338 
  4. Differential regional and subtype-specific vulnerability of enteric neurons to mitochondrial dysfunction. PLoS One. 2011;6(11):e27727. doi:10.1371/journal.pone.0027727  PMCID:PMC3218017  PMID:22110743 
  5. Augmentation of the ascending component of the peristaltic reflex and substance P release by glial cell line-derived neurotrophic factor. Neurogastroenterol Motil. 2010;22(7):779-86. doi:10.1111/j.1365-2982.2010.01489.x  PMCID:PMC2899677  PMID:20331804 
  6. Serum markers may distinguish biliary atresia from other forms of neonatal cholestasis. J Pediatr Gastroenterol Nutr. 2010;50(4):411-6. doi:10.1097/MPG.0b013e3181cb42ee  PMCID:PMC2881691  PMID:20216099 
  7. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest. 2010;120(3):778-90. doi:10.1172/JCI41619  PMCID:PMC2827965  PMID:20160347 
  8. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 2010;137(4):631-40. doi:10.1242/dev.040550  PMCID:PMC2827616  PMID:20110328 
  9. The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function. J Neurosci. 2010;30(4):1523-38. doi:10.1523/JNEUROSCI.3861-09.2010  PMCID:PMC2836725  PMID:20107080 
  10. Dosage effects of cohesin regulatory factor PDS5 on mammalian development: implications for cohesinopathies. PLoS One. 2009;4(5):e5232. doi:10.1371/journal.pone.0005232  PMCID:PMC2672303  PMID:19412548 
  11. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol. 2008;320(1):185-98. doi:10.1016/j.ydbio.2008.05.524  PMCID:PMC2586054  PMID:18561907 
  12. Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development. 2007;134(17):3191-201. doi:10.1242/dev.005884  PMID:17652350 
  13. Protein kinase Czeta and glycogen synthase kinase-3beta control neuronal polarity in developing rodent enteric neurons, whereas SMAD specific E3 ubiquitin protein ligase 1 promotes neurite growth but does not influence polarity. J Neurosci. 2007;27(35):9458-68. doi:10.1523/JNEUROSCI.0870-07.2007  PMCID:PMC2267823  PMID:17728459 
  14. PAI-1 deficiency reduces liver fibrosis after bile duct ligation in mice through activation of tPA. FEBS Lett. 2007;581(16):3098-104. doi:10.1016/j.febslet.2007.05.049  PMID:17561000 
  15. Reduced endothelin converting enzyme-1 and endothelin-3 mRNA in the developing bowel of male mice may increase expressivity and penetrance of Hirschsprung disease-like distal intestinal aganglionosis. Dev Dyn. 2007;236(1):106-17. doi:10.1002/dvdy.21028  PMID:17131407 
  16. BMP signaling regulates murine enteric nervous system precursor migration, neurite fasciculation, and patterning via altered Ncam1 polysialic acid addition. Dev Biol. 2006;299(1):137-50. doi:10.1016/j.ydbio.2006.07.016  PMCID:PMC1950940  PMID:16952347 
  17. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol. 2006;298(1):259-71. doi:10.1016/j.ydbio.2006.06.033  PMCID:PMC1952185  PMID:16904662 
  18. Getting to the guts of enteric nervous system development. Development. 2006;133(12):2287-90. doi:10.1242/dev.02418  PMID:16720873 
  19. Transcriptional profiling after bile duct ligation identifies PAI-1 as a contributor to cholestatic injury in mice. Hepatology. 2005;42(5):1099-108. doi:10.1002/hep.20903  PMID:16250054 
  20. Enteric neuroblasts require the phosphatidylinositol 3-kinase/Akt/Forkhead pathway for GDNF-stimulated survival. Mol Cell Neurosci. 2005;29(1):107-19. doi:10.1016/j.mcn.2005.02.005  PMID:15866051 
  21. A human yeast artificial chromosome containing the multiple endocrine neoplasia type 2B Ret mutation does not induce medullary thyroid carcinoma but does support the growth of kidneys and partially rescues enteric nervous system development in Ret-deficient mice. Am J Pathol. 2005;166(1):265-74. doi:10.1016/S0002-9440(10)62250-X  PMCID:PMC1602306  PMID:15632018 
  22. GFRalpha1 expression in cells lacking RET is dispensable for organogenesis and nerve regeneration. Neuron. 2004;44(4):623-36. doi:10.1016/j.neuron.2004.10.032  PMID:15541311 
  23. Neurturin signalling via GFRalpha2 is essential for innervation of glandular but not muscle targets of sacral parasympathetic ganglion neurons. Mol Cell Neurosci. 2004;25(2):288-300. doi:10.1016/j.mcn.2003.10.019  PMID:15019945 
  24. Finding your way to the end: a tale of GDNF and endothelin-3. Neuron. 2003;40(5):871-3. PMID:14659083 
  25. Neurturin-deficient mice develop dry eye and keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 2003;44(10):4223-9. PMID:14507865 
  26. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 2003;130(10):2187-98. PMID:12668632 
  27. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development. 2000;127(22):4877-89. PMID:11044402 
  28. Anomalous development of the hepatobiliary system in the Inv mouse. Hepatology. 1999;30(2):372-8. doi:10.1002/hep.510300223  PMID:10421642 
  29. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron. 1999;22(2):253-63. PMID:10069332 
  30. GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21(2):317-24. PMID:9728913 
  31. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol. 1998;200(1):116-29. doi:10.1006/dbio.1998.8955  PMID:9698461 
  32. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20(2):245-53. PMID:9491986 
  33. Neurturin, a novel neurotrophic factor, is localized to mouse chromosome 17 and human chromosome 19p13.3. Genomics. 1997;44(1):137-40. doi:10.1006/geno.1997.4846  PMID:9286710 
  34. Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons. Proc Natl Acad Sci U S A. 1997;94(13):7018-23. PMCID:PMC21277  PMID:9192684 
  35. TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron. 1997;18(5):793-802. PMID:9182803 
  36. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996;384(6608):467-70. doi:10.1038/384467a0  PMID:8945474 
  37. Functional analysis of protein N-myristoylation: metabolic labeling studies using three oxygen-substituted analogs of myristic acid and cultured mammalian cells provide evidence for protein-sequence-specific incorporation and analog-specific redistribution. Proc Natl Acad Sci U S A. 1990;87(21):8511-5. PMCID:PMC54986  PMID:2236060 
  38. Novel fatty acyl substrates for myristoyl-CoA:protein N-myristoyl-transferase. J Lipid Res. 1990;31(6):1121-9. PMID:2197361 
  39. Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A. 1990;87(4):1506-10. PMCID:PMC53504  PMID:2406721 
  40. Replication of human immunodeficiency virus 1 and Moloney murine leukemia virus is inhibited by different heteroatom-containing analogs of myristic acid. Proc Natl Acad Sci U S A. 1989;86(22):8655-9. PMCID:PMC298346  PMID:2813417 
  41. Altered membrane association of p60v-src and a murine 63-kDa N-myristoyl protein after incorporation of an oxygen-substituted analog of myristic acid. Proc Natl Acad Sci U S A. 1989;86(14):5262-6. PMCID:PMC297601  PMID:2501783 
  42. Disruption of the yeast N-myristoyl transferase gene causes recessive lethality. Science. 1989;243(4892):796-800. PMID:2644694 
  43. Heteroatom-substituted fatty acid analogs as substrates for N-myristoyltransferase: an approach for studying both the enzymology and function of protein acylation. Proc Natl Acad Sci U S A. 1988;85(23):8795-9. PMCID:PMC282593  PMID:3143109 
  44. 11-(Ethylthio)undecanoic acid. A myristic acid analogue of altered hydrophobicity which is functional for peptide N-myristoylation with wheat germ and yeast acyltransferase. J Biol Chem. 1988;263(5):2127-33. PMID:3123489 
  45. Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem. 1987;262(20):9709-17. PMID:3036869 
  46. The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Annu Rev Nutr. 1987;7:337-59. doi:10.1146/annurev.nu.07.070187.002005  PMID:3300738 
Wash U School of Medicine
Children's Hospital St. Louis
Children's Discovery Institute
© 2017 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130