Scott Saunders, M.D., Ph.D.  saunders_s@wustl.edu

Profile picture
Associate Professor of Pediatrics, Newborn Medicine
Newborn Medicine

phone: (314) 454-6148

Education

  • BS, University of Minnesota1983
  • MD, Stanford University School of Medicine1990
  • PhD, Stanford University School of Medicine1990

Training

  • Intern in Medicine, Children's Hospital, Boston, MA1990 - 1991
  • Resident in Medicine, Children's Hospital, Boston, MA1991 - 1993
  • Postdoc Fellow, Brain & Cognitive Sciences, Massachusetts Institute of Technology, MA1993 - 1995
  • Clinical Fellow in Newborn Medicine, Joint Program in Neonatology, Harvard Medical School1993 - 1996
  • Certified Medical Transport Executive, AAMS Medical Transport Leadership Institute2016 - 2017

Licensure and Board Certification

  • 1980Federal Aviation Administration, Private Pilot, Airplane Single Engine Land
  • 1991National Board of Medical Examiners, Diplomate
  • 1993 - 1997MA, Physician/Board of Registration in Medicine
  • 1993 - 2008American Board of Pediatrics, General Pediatrics Certification
  • 1997 - PresMO, Physician & Surgeon/Board of Registration for the Healing Arts
  • 2008 - PresAmerican Board of Pediatrics, Neonatal-Perinatal Medicine Certification
  • 2015 - PresIL, Physician & Surgeon/Dept. of Financial and Professional Regulation
  • 2015 - 2019Advanced Trauma Life Support
  • 2016 - 2019C-NPT (Neonatal Pediatric Transport)
  • 2017CEVO 3: Ambulance
  • 2017 - PresCMTE (Certified Medical Transport Executive)
  • 2018 - 2020Pediatric Advanced Life Support
  • 2018 - 2020Basic Life Support
  • 2018 - 2020Advanced Cardiac Life Support
  • 2019 - 2021Neonatal Resuscitation Program

Honors and Awards

  • Alumni Scholarship, College of Biological Sciences, University of Minnesota1982
  • Phi Beta Kappa1983
  • Summa cum Laude, Biochemistry1983
  • Medical Student Research Award, Society for Pediatric Research1989
  • Howard Hughes Medical Institute Postdoctoral Research Fellowship for Physicians1994
  • Reynolds Rich Smith Fellowship in Development and Function of the Central Nervous System1994
  • Wyeth Pediatrics Neonatology Research Grant1994
  • Basil O'Connor Starter Scholar Research Award, March of Dimes Birth Defects Foundation1997
  • Scholar, NIH-designated Child Health Research Center, Washington University School of Medicine1997
  • Spoehrer Scholar Award, Department of Pediatrics, Washington University School of Medicine1999
  • Society for Pediatric Research, Member2001
  • Promotion with tenure2006 - Pres

Recent Publications view all (22)


Publication Co-Authors

  1. Potential risk modifiers for severe intraventricular hemorrhage in very low birthweight infants requiring transport J Matern Fetal Neonatal Med. 2020. doi:10.1080/14767058.2020.1813708  PMID:3273087 
  2. Addressing medically-underserved populations through maternal-fetal transport:A geographic analysis J Matern Fetal Neonatal Med.. 2020;33(17):2913-2917. doi:10.1080/14767058.2018.1564028  PMID:30585099 
  3. Implementation of telemedicine in pediatric and neonatal transport Air Med J. 2020;39(4):271-275. doi:10.1016/j.amj.2020.04.008. Epub 2020 May 7  PMID:32690303 
  4. Wise regulates bone deposition through genetic interactions with Lrp5. PLoS One. 2014;9(5):e96257. doi:10.1371/journal.pone.0096257  PMCID:PMC4006890  PMID:24789067 
  5. Recurrent deletions and reciprocal duplications of 10q11.21q11.23 including CHAT and SLC18A3 are likely mediated by complex low-copy repeats. Hum Mutat. 2012;33(1):165-79. doi:10.1002/humu.21614  PMCID:PMC3655525  PMID:21948486 
  6. Sex-specific quantitative trait loci linked to autoresuscitation failure in SWR/J mice. Heredity (Edinb). 2009;103(6):469-75. doi:10.1038/hdy.2009.89  PMCID:PMC2783180  PMID:19654605 
  7. Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development. Dev Biol. 2009;335(1):208-15. doi:10.1016/j.ydbio.2009.08.029  PMCID:PMC2763964  PMID:19733558 
  8. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res. 2006;21(11):1738-49. doi:10.1359/jbmr.060810  PMID:17002572 
  9. The rare occurrence of absent adrenals in a term infant: a case report and review of the literature. Am J Perinatol. 2006;23(2):111-4. doi:10.1055/s-2006-931911  PMID:16506117 
  10. Allelic variation in the serotonin transporter (5HTT) gene contributes to idiopathic pulmonary hypertension in children. Biochem Biophys Res Commun. 2005;334(2):376-9. doi:10.1016/j.bbrc.2005.06.107  PMID:16009349 
  11. Altered hematopoiesis in glypican-3-deficient mice results in decreased osteoclast differentiation and a delay in endochondral ossification. Dev Biol. 2005;282(1):152-62. doi:10.1016/j.ydbio.2005.03.003  PMID:15936336 
  12. Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem. 2004;279(7):5604-11. doi:10.1074/jbc.M310691200  PMID:14645250 
  13. Heparan sulfate proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic protein gradients. J Biol Chem. 2002;277(3):2089-96. doi:10.1074/jbc.M109151200  PMID:11706034 
  14. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol. 2000;225(1):179-87. doi:10.1006/dbio.2000.9831  PMID:10964473 
  15. GPC6, a novel member of the glypican gene family, encodes a product structurally related to GPC4 and is colocalized with GPC5 on human chromosome 13. Genomics. 1999;57(3):455-8. doi:10.1006/geno.1999.5793  PMID:10329016 
  16. Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kidney, limb, and brain. Dev Biol. 1997;190(1):78-93. doi:10.1006/dbio.1997.8690  PMID:9331333 
  17. Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell. 1995;6(5):559-76. PMCID:PMC301215  PMID:7545031 
  18. Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol. 1989;108(4):1547-56. PMCID:PMC2115498  PMID:2494194 
  19. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol. 1988;106(2):423-30. PMCID:PMC2114970  PMID:2963012 
  20. Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J Cell Biol. 1987;105(6 Pt 2):3087-96. PMCID:PMC2114732  PMID:3320062 
  21. Electrostatic modification of protein surfaces: effect on hemoglobin ligation and solubility. Biochemistry. 1984;23(7):1457-61. PMID:6426506 
  22. Stereoselectivity of chloroperoxidase-dependent halogenation. Biochemistry. 1983;22(13):3271-7. PMID:6882748 
Last updated: 09/07/2020
© 2020 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130