Brian DeBosch, M.D., Ph.D.

Profile picture
Assistant Professor of Pediatrics, Gastroenterology, Hepatology and Nutrition
Cell Biology & PhysiologyGastroenterology, Hepatology and Nutrition

phone: (314) 454-6173

Clinical Interests

Non-alcoholic fatty liver disease, Obesity


  • BS, Summa Cum Laude Distinction, University of Michigan2001
  • MD, Washington University School of Medicine2008
  • PhD, Olin Fellowship, Washington University School of Medicine2008


  • Residency, St. Louis Children's Hospital2008 - 2010
  • Fellowship - Accelerated Research Pathway, Washington University School of Medicine2010 - 2014

Licensure and Board Certification

  • 2008 - PresBasic Life Support
  • 2008 - 2010Neonatal Resuscitation Program
  • 2008 - 2010Pediatric Advanced Life Support
  • 2013 - PresAmerican Board of Pediatrics
  • 2015 - PresMO, Physician & Surgeon License
  • 2015 - PresAmerican Board of Pediatrics (ABP), Pediatric Gastroenterology, Hepatology & Nutrition

Honors and Awards

  • National Merit Scholar1997
  • Regents-Alumni Scholar, University of Michigan, Ann Arbor1997
  • UPAAM Outstanding Youth of Michigan Scholar1997
  • Academic Merit Scholar, College of Literature, Science & Arts, University of Michigan, Ann Arbor1997 - 2001
  • Ford Endowed Merit Scholar1997 - 2001
  • James B. Angell Scholar, University of Michigan, Ann Arbor1997 - 2001
  • Class Honors Award, University of Michigan, Ann Arbor1998 - 2001
  • Sophomore Honors Award, University of Michigan, Ann Arbor1999
  • Telluride Association Scholar1999 - 2001
  • Barry M. Goldwater Scholar2000 - 2001
  • Delta Phi Alpha National German Honor Society2001 - Pres
  • National Council on Undergraduate Research Award2001
  • Highest Honors Thesis Distinction, University of Michigan, Ann Arbor2001 - 2001
  • Summa Cum Laude, University of Michigan, Ann Arbor2001 - 2001
  • Triple Crown Award - St. Louis Children's Hospital2011
  • Digestive Diseases Research Center P&F Award2013 - 2015
  • Faculty Scholar - Children's Discovery Institute2014 - Pres
  • Scholar - Child Health Research Center of Washington University School of Medicine2014 - Pres
  • Early Investigator Award - the Endocrine Society2015 - Pres
  • St. Louis Children's Hospital Recognition Award2015
  • United States Department of Defense Discovery Award2017 - Pres
  • Inductee, Society for Pediatric Research2018 - Pres
  • Triple Crown Award - St. Louis Children's Hospital2018 - 2018
  • Co-Inventor (Paul Hruz, MD, PhD), LEAP Inventor Challenge - Washington University School of Medicine Skandalaris Center: "Novel Treatment of Fatty Liver Disease"2018 - Pres
  • Doris Duke Charitable Foundation Clinical Scientist Development Award2019 - Pres
  • Early Career Reviewer - NIH / CSR2020 - 2020
  • AGA Institute Research Awards Panel2020 - Pres
  • AASLD Pilot Research Award2020 - 2021

Recent Publications view all (43)

Publication Co-Authors

  1. Targeting De Novo Lipogenesis by Different Approaches Shows Promise in Nonalcoholic Steatohepatitis Gastroenterology. 2022. doi:10.1053/j.gastro.2022.07.085  PMID:35963367 
  2. A protocol to induce systemic autophagy and increase energy metabolism in mice using PEGylated arginine deiminase. STAR Protoc. 2022;3(3):101489. doi:10.1016/j.xpro.2022.101489  PMID:35776644 
  3. Splitting Hairs: Folliculin Parts the Good From the Bad in mTORC1 Control Over Lipid Metabolism Gastroenterology. 2022. doi:doi: 10.1053/j.gastro.2022.06.008  PMID:35671806 
  4. Driving arginine catabolism to activate systemic autophagy Autophagy Rep. 2022;1(1):65-69. doi:10.1080/27694127.2022.2040763  
  5. SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase Nature Comm. 2022;13(1):1074. doi:10.1038/s41467-022-28717-7  PMID:35228549 
  6. Pegylated arginine deiminase drives arginine turnover and systemic autophagy to dictate energy metabolism Cell Rep Med. 2022;3(1):100498. doi:10.1016/j.xcrm.2021.100498  PMCID:PMC8784773  PMID:35106510 
  7. A Clinical Model to Predict Fibrosis on Liver Biopsy in Pediatric Subjects with Non-alcoholic Fatty Liver Disease Clin Obes. 2021;11(5):e12472. doi:10.1111/cob.12472  PMID:34106515 
  8. Maternal Fructose Diet-Induced Developmental Programming Nutrients. 2021;13(9):3278. doi:10.3390/nu13093278  
  9. Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy-lysosome biogenesis response Autophagy. 2021. 
  10. Importance of adipose tissue NAD+ biology in regulating metabolic flexibility Endocrinology. 2021;162(3):bqab006. doi:doi: 10.1210/endocr/bqab006  PMID:33543238 
  11. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) Autophagy. 2021;8:1-382. doi:doi: 10.1080/15548627.2020.1797280  PMID:33634751 
  12. Nutritional modulation of heart failure in mitochondrial pyruvate carrier-deficient mice. Nat Metab. 2020;2(11):1232-1247. PMID:33106690 
  13. Tissue-Specific Fructose Metabolism in Obesity and Diabetes Curr Diab Rep. 2020;20:64. doi:10.1007/s11892-020-01342-8  
  14. Targeting hepatocyte carbohydrate transport to mimic fasting and calorie restriction. FEBS. 2020. doi:doi: 10.1111/febs.15482  PMID:32654397 
  15. Microbial and metabolic impacts of trehalose and trehalose analogues Gut Microbes. 2020;24:1-8. doi:doi: 10.1080/19490976.2020.1750273  PMID:32329657 
  16. Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology. 2020;158(5):1402-1416.e2. PMCID:PMC7103499  PMID:31838076 
  17. Using trehalose to prevent and treat metabolic function: effectiveness and mechanisms Curr Opin Clin Nutr Metab Care. 2019;22(4):303-310. doi:10.1097/MCO.0000000000000568  PMID:31033580 
  18. Impaired Chylomicron Assembly Modifies Hepatic Metabolism Through Bile Acid-Dependent and Transmissible Microbial Adaptations. Hepatology. 2019;70(4):1168-1184. doi:10.1002/hep.30669  PMCID:PMC6783349  PMID:31004524 
  19. Hepatocyte Arginase 2 is sufficient to convey the therapeutic metabolic effects of fasting Nature Communications. 2019;10:1587. doi:0.1038/s41467-019-09642-8  PMCID:PMC6453920  PMID:30962478 
  20. Degradation-Resistant Trehalose Analogues Block Utilization of Trehalose by Hypervirulent Clostridioides difficile Chem Comm. 2019;55(34):5009-5012. doi:10.1039/C9CC01300H  PMCID:PMC6499371  PMID:30968891 
  21. Breath Collection from Children for Disease Biomarker Discovery J. Vis. Exp.. 2019; 144:e59217. doi:10.3791/59217  PMCID:PMC6596991  PMID:30829338 
  22. Maternal High-Fat, High-Sucrose Diet Induces Transgenerational Cardiac Mitochondrial Dysfunction Independent of Maternal Mitochondrial Inheritance AJP Heart Circ Physiol. 2019;316(5):H1202-H1210. doi:10.1152/ajpheart.00013.2019  PMCID: PMC6580388  PMID:30901280 
  23. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am J Physiol Renal Physiol. 2019. doi:10.1152/ajprenal.00133.2018  PMCID:PMC6580250  PMID:30724105 
  24. Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARγ. JCI Insight. 2018;3(16). PMCID:PMC6141168  PMID:30135298 
  25. Enhanced Hepatic PPARα Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology. 2018;159(5):2110-2126. PMCID:PMC6366533  PMID:29596655 
  26. Transcription Factor EB (TFEB)-dependent Induction of Thermogenesis by the Hepatocyte Solute Carrier 2A (SLC2A) inhibitor, Trehalose Autophagy. 2018;24(22):2959-1975. doi:10.1080/15548627.2018.1493044  PMCID:PMC6152536  PMID:29996716 
  27. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Sci Rep. 2016;6:38586. PMCID:PMC5138640  PMID:27922102 
  28. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal. 2016;9(416):ra21. PMCID:PMC4816640  PMID:26905426 
  29. Modeling the effect of cigarette smoke on hexose utilization in spermatocytes. Reprod Sci. 2015;22(1):94-101. doi:10.1177/1933719114533727  PMCID:PMC4527419  PMID:24803506 
  30. Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat Commun. 2014;5:4642. doi:10.1038/ncomms5642  PMCID:PMC4348061  PMID:25100214 
  31. Glucose transporter 8 (GLUT8) mediates fructose-induced de novo lipogenesis and macrosteatosis. J Biol Chem. 2014;289(16):10989-98. doi:10.1074/jbc.M113.527002  PMCID:PMC4036240  PMID:24519932 
  32. Glucose transporter-8 (GLUT8) mediates glucose intolerance and dyslipidemia in high-fructose diet-fed male mice. Mol Endocrinol. 2013;27(11):1887-96. doi:10.1210/me.2013-1137  PMCID:PMC3805847  PMID:24030250 
  33. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181-91. doi:10.1210/en.2012-1541  PMCID:PMC3423610  PMID:22822162 
  34. Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol. 2010;49(6):931-40. doi:10.1016/j.yjmcc.2010.08.011  PMCID:PMC2975863  PMID:20728450 
  35. TRB3 function in cardiac endoplasmic reticulum stress. Circ Res. 2010;106(9):1516-23. doi:10.1161/CIRCRESAHA.109.211920  PMCID:PMC2913227  PMID:20360254 
  36. Fetus-saving Caesarian rejection by pregnant woman: a case study. Surgery. 2009;145(1):6-8. PMID:19093328 
  37. Insulin signaling pathways and cardiac growth. J Mol Cell Cardiol. 2008;44(5):855-64. doi:10.1016/j.yjmcc.2008.03.008  PMCID:PMC2442827  PMID:18423486 
  38. The 14-3-3tau phosphoserine-binding protein is required for cardiomyocyte survival. Mol Cell Biol. 2007;27(4):1455-66. doi:10.1128/MCB.01369-06  PMCID:PMC1800730  PMID:17145769 
  39. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J Biol Chem. 2006;281(43):32841-51. doi:10.1074/jbc.M513087200  PMCID:PMC2724003  PMID:16950770 
  40. Akt1 is required for physiological cardiac growth. Circulation. 2006;113(17):2097-104. doi:10.1161/CIRCULATIONAHA.105.595231  PMID:16636172 
  41. Role of Akt in cardiac growth and metabolism. Novartis Found Symp. 2006;274:118-26; discussion 126-31, 152-5, 272-6. PMID:17019809 
  42. Insulin-like growth factor-1 effects on bovine retinal endothelial cell glucose transport: role of MAP kinase. J Neurochem. 2002;81(4):728-34. PMID:12065632 
  43. Effects of insulin-like growth factor-1 on retinal endothelial cell glucose transport and proliferation. J Neurochem. 2001;77(4):1157-67. PMID:11359881 
Last updated: 11/15/2022
© 2022 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130