Schwartz, Alan L., Ph.D., M.D.  schwartz@wustl.edu

Professor of Pediatrics, Hematology and Oncology
Professor of Developmental Biology
Developmental BiologyHematology and Oncology

phone: (314) 454-6018

Education

  • BA, Case Western Reserve University1970
  • PhD, Case Western Reserve University1974
  • MD, Case Western Reserve University1976

Training

  • Research Fellow, University of Helsinki1972 - 1973
  • NIH Postdoctoral Fellow, Case Western Reserve University1974 - 1974
  • Fellow of the Medical Research Council of New Zealand, University of Auckland, National Women's Hospital1975 - 1976
  • Residency, Children's Hospital Medical Center1976 - 1978
  • Clinical Fellow in Pediatrics, Harvard Medical School1977 - 1978
  • Fellow in Hematology/Oncology, Children's Hospital Medical Center and the Dana Farber Cancer Institute1978 - 1979

Licensure and Board Certification

  • MA, Medical License 1977
  • Diplomate of the American Board of Pediatrics 1981
  • MO, Medical License 1986

Honors

  • University Book Prize in Biology, Case Western Reserve University1970
  • Alpha Omega Alpha, Case Western Reserve University School of Medicine1975
  • John L. Caughey, M.D. Award for Clinical Investigation, Case Western Reserve University School of Medicine1975
  • Bronze Medal of the Royal Humane Society of New Zealand1976
  • Upjohn Award in Clinical Pharmacology, Case Western Reserve University School of Medicine1976
  • George von L. Meyer Award, Children's Hospital Medical Center1977
  • Sidney Farber House Staff Prize, Children's Hospital Medical Center1978
  • David Abraham Fellowship in Pediatric Hematology and Oncology1979
  • Bushrod H. Campbell and Adah F. Hall Medical Foundation Fellow1980 - 1982
  • Outstanding Young Investigator, Boston Blood Club1981
  • John A. and George Hartford Foundation Fellow1982 - 1985
  • Society for Pediatric Research, Young Investigator Award1983
  • Established Investigator, American Heart Association1985 - 1990
  • Alumni Endowed Professor of Pediatrics, Washington University School of Medicine1987 - 1998
  • Gold Metal Award, Hospital Association of Greater St. Louis1988
  • Teacher of the Year, Washington University School of Medicine1988
  • Basil O'Connor Award, March of Dimes1990 - 1995
  • Outstanding Clinical Teacher 1990-1991, St. Louis Children's Hospital1991
  • Distinguished Visiting Professor, University of Utrecht School of Medicine, Utrecht, The Netherlands1993 - 1998
  • E. Mead Johnson Award1993
  • Distinguished Service Teaching Award, Washington University School of Medicine1993
  • Who's Who in Midwest1994 - 2002
  • Distinguished Service Teaching Award, Washington University School of Medicine1994
  • Harriet B. Spoehrer Professor of Pediatrics, Washington University School of Medicine1995 - 2016
  • Who's Who in American Education1995 - Pres
  • United States Patent 5,474,766 for Methods and Compositions for Inhibition of Hepatic Clearance of Tissue Type Plasminogen Activator, Docket Number C00108/059407 (issued December 12)1995
  • Who's Who in America1996 - 2010
  • Fellows Award, Barnes-Jewish Hospital Foundation1996
  • United States Patent 5,650,391 for Methods and Compositions for Inhibition of Hepatic Clearance of Tissue Factor Pathway Inhibitor (issued July 22)1997
  • Elected to National Academy of Medicine (Formally Institute of Medicine, National Academy of Sciences, U.S.A.)1999 - Pres
  • Who's Who in Medicine and Healthcare2001 - Pres
  • Best Doctors in America2003 - 2010
  • American Men and Women of Science2004
  • Who's Who Among America's Teachers2004 - Pres
  • Distinguished Faculty Award, Washington University School of Medicine2006
  • Elected Fellow, American Association for the Advancement of Science2007 - Pres
  • Best Doctors in America2007 - 2010
  • Fellows Award, Academy of Science – St. Louis2010
  • Doctor Medicinae et Chirurgiae Honoris Causa, University of Helsinki, Finland (Honorary Degree)2010

Recent Publications view all (229)


Publication Co-Authors

  1. RNF4-Dependent Oncogene Activation by Protein Stabilization. Cell Rep. 2016;16(12):3388-400. PMID:27653698 
  2. Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol. 2015;230(4):842-52. doi:10.1002/jcp.24812  PMCID:PMC4596538  PMID:25204433 
  3. American Pediatric Society 2014 presidential address: the thrill of discovery (and other foundations of biomedical research). Pediatr Res. 2014;76(3):316-20. doi:10.1038/pr.2014.81  PMID:24937547 
  4. Commentary: physician-scientist attrition: stemming the tide through national networks for training and development. Acad Med. 2011;86(9):1071-2. doi:10.1097/ACM.0b013e318224fd75  PMID:21865903 
  5. The Future of Children's Health in the Genomic Era. Rambam Maimonides Med J. 2011;2(3):e0053. doi:10.5041/RMMJ.10053  PMCID:PMC3678796  PMID:23908811 
  6. Ubiquitin proteasome-dependent degradation of the transcriptional coactivator PGC-1{alpha} via the N-terminal pathway. J Biol Chem. 2010;285(51):40192-200. doi:10.1074/jbc.M110.131615  PMCID:PMC3001001  PMID:20713359 
  7. Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res. 2009;69(3):879-86. doi:10.1158/0008-5472.CAN-08-3379  PMCID:PMC2633434  PMID:19176371 
  8. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol. 2009;49:73-96. doi:10.1146/annurev.pharmtox.051208.165340  PMID:18834306 
  9. The N-terminal domain of MyoD is necessary and sufficient for its nuclear localization-dependent degradation by the ubiquitin system. Proc Natl Acad Sci U S A. 2008;105(41):15690-5. doi:10.1073/pnas.0808373105  PMCID:PMC2560994  PMID:18836078 
  10. In vivo interactions of MyoD, Id1, and E2A proteins determined by acceptor photobleaching fluorescence resonance energy transfer. FASEB J. 2008;22(6):1694-701. doi:10.1096/fj.07-095000  PMID:18198216 
  11. Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci U S A. 2008;105(9):3339-44. doi:10.1073/pnas.0800165105  PMCID:PMC2265166  PMID:18296633 
  12. Slow endocytosis of the LDL receptor-related protein 1B: implications for a novel cytoplasmic tail conformation. Exp Cell Res. 2007;313(15):3298-307. doi:10.1016/j.yexcr.2007.05.026  PMCID:PMC2002472  PMID:17658514 
  13. E2A protein degradation by the ubiquitin-proteasome system is stage-dependent during muscle differentiation. Oncogene. 2007;26(3):441-8. doi:10.1038/sj.onc.1209793  PMID:16909127 
  14. E12 and E47 modulate cellular localization and proteasome-mediated degradation of MyoD and Id1. Oncogene. 2005;24(42):6376-84. doi:10.1038/sj.onc.1208789  PMID:16007194 
  15. Ubiquitin-proteasome-mediated degradation, intracellular localization, and protein synthesis of MyoD and Id1 during muscle differentiation. J Biol Chem. 2005;280(28):26448-56. doi:10.1074/jbc.M500373200  PMID:15888449 
  16. Independent and cooperative roles of N-glycans and molecular chaperones in the folding and disulfide bond formation of the low-density lipoprotein (LDL) receptor-related protein. Biochemistry. 2005;44(15):5794-803. doi:10.1021/bi047652a  PMID:15823038 
  17. LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering beta-catenin subcellular distribution. Oncogene. 2004;23(56):9129-35. doi:10.1038/sj.onc.1208123  PMID:15516984 
  18. The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim Biophys Acta. 2004;1695(1-3):3-17. doi:10.1016/j.bbamcr.2004.09.018  PMID:15571805 
  19. The tumor suppressor protein p16(INK4a) and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system. Direct evidence for ubiquitination at the N-terminal residue. J Biol Chem. 2004;279(40):41414-21. doi:10.1074/jbc.M407201200  PMID:15254040 
  20. Ubiquitin-Proteasome-mediated degradation of Id1 is modulated by MyoD. J Biol Chem. 2004;279(31):32614-9. doi:10.1074/jbc.M403794200  PMID:15163661 
  21. Degradation of the LDL receptor class 2 mutants is mediated by a proteasome-dependent pathway. J Lipid Res. 2004;45(6):1084-91. doi:10.1194/jlr.M300482-JLR200  PMID:14993243 
  22. Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination. Biochem Biophys Res Commun. 2004;314(2):505-12. PMID:14733935 
  23. Determinants of nuclear and cytoplasmic ubiquitin-mediated degradation of MyoD. J Biol Chem. 2003;278(3):1817-23. doi:10.1074/jbc.M208815200  PMID:12397066 
  24. Low density lipoprotein (LDL) receptor-related protein 1B impairs urokinase receptor regeneration on the cell surface and inhibits cell migration. J Biol Chem. 2002;277(44):42366-71. doi:10.1074/jbc.M207705200  PMID:12194987 
  25. Cellular catabolism of lipid poor apolipoprotein E via cell surface LDL receptor-related protein. J Biochem. 2002;132(5):743-9. PMID:12417024 
  26. Proteasome regulates the delivery of LDL receptor-related protein into the degradation pathway. Mol Biol Cell. 2002;13(9):3325-35. doi:10.1091/mbc.E02-03-0152  PMCID:PMC124162  PMID:12221136 
  27. Receptor-associated protein facilitates proper folding and maturation of the low-density lipoprotein receptor and its class 2 mutants. Biochemistry. 2002;41(15):4921-8. PMID:11939787 
  28. Ubiquitin-mediated degradation of cellular proteins in health and disease. Hepatology. 2002;35(1):3-6. doi:10.1053/jhep.2002.30316  PMID:11786953 
  29. The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J Biol Chem. 2001;276(31):28889-96. doi:10.1074/jbc.M102727200  PMID:11384978 
  30. The nuclear ubiquitin-proteasome system degrades MyoD. J Biol Chem. 2001;276(25):22468-75. doi:10.1074/jbc.M009388200  PMID:11309375 
  31. Exercise reduces daily fatigue in women with breast cancer receiving chemotherapy. Med Sci Sports Exerc. 2001;33(5):718-23. PMID:11323538 
  32. Dissection of receptor folding and ligand-binding property with functional minireceptors of LDL receptor-related protein. J Cell Sci. 2001;114(Pt 5):899-908. PMID:11181173 
  33. Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105. Biochimie. 2001;83(3-4):341-9. PMID:11295495 
  34. Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene. 2000;19(51):5944-50. PMID:11127826 
  35. SCF(beta)(-TrCP) ubiquitin ligase-mediated processing of NF-kappaB p105 requires phosphorylation of its C-terminus by IkappaB kinase. EMBO J. 2000;19(11):2580-91. doi:10.1093/emboj/19.11.2580  PMCID:PMC212749  PMID:10835356 
  36. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays. 2000;22(5):442-51. doi:10.1002/(SICI)1521-1878(200005)22:5<442::AID-BIES6>3.0.CO;2-Q  PMID:10797484 
  37. Recombinant full-length tissue factor pathway inhibitor fails to bind to the cell surface: implications for catabolism in vitro and in vivo. Blood. 2000;95(6):1973-8. PMID:10706863 
  38. The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem Suppl. 2000;34:40-51. PMID:10762014 
  39. The carboxyl-terminal domain of receptor-associated protein facilitates proper folding and trafficking of the very low density lipoprotein receptor by interaction with the three amino-terminal ligand-binding repeats of the receptor. J Biol Chem. 1999;274(36):25877-82. PMID:10464330 
  40. Structural motifs involved in ubiquitin-mediated processing of the NF-kappaB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol Cell Biol. 1999;19(5):3664-73. PMCID:PMC84174  PMID:10207090 
  41. Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO J. 1999;18(1):28-36. doi:10.1093/emboj/18.1.28  PMCID:PMC1171099  PMID:9878047 
  42. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med. 1999;50:57-74. doi:10.1146/annurev.med.50.1.57  PMID:10073263 
  43. Ca2+ and receptor-associated protein are independently required for proper folding and disulfide bond formation of the low density lipoprotein receptor-related protein. J Biol Chem. 1998;273(35):22374-81. PMID:9712858 
  44. Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci U S A. 1998;95(14):8058-63. PMCID:PMC20928  PMID:9653139 
  45. RAP, a novel type of ER chaperone. Trends Cell Biol. 1998;8(7):272-6. PMID:9714598 
  46. Di-leucine-mediated internalization of ligand by a truncated growth hormone receptor is independent of the ubiquitin conjugation system. J Biol Chem. 1998;273(26):16426-33. PMID:9632708 
  47. Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein. J Biol Chem. 1998;273(21):13359-65. PMID:9582384 
  48. The changing health care environment: implications for residency training. Pediatrics. 1998;101(4 Pt 2):795-803; discussion 803-4. PMID:9544185 
  49. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci U S A. 1998;95(6):2727-30. PMCID:PMC34259  PMID:9501156 
  50. The low-density lipoprotein receptor-related protein (LRP) mediates clearance of coagulation factor Xa in vivo. Blood. 1998;91(2):555-60. PMID:9427709 
  51. Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J Neurochem. 1997;69(5):1904-11. PMID:9349534 
  52. Glypican-3 is a binding protein on the HepG2 cell surface for tissue factor pathway inhibitor. Biochem J. 1997;327 ( Pt 2):577-83. PMCID:PMC1218832  PMID:9359432 
  53. Tissue factor pathway inhibitor endocytosis. Trends Cardiovasc Med. 1997;7(7):234-9. doi:10.1016/S1050-1738(97)00083-2  PMID:21235890 
  54. Linkage of the ubiquitin-conjugating system and the endocytic pathway in ligand-induced internalization of the growth hormone receptor. EMBO J. 1997;16(16):4851-8. doi:10.1093/emboj/16.16.4851  PMCID:PMC1170120  PMID:9305627 
  55. Role of heparan sulfate proteoglycans in the uptake and degradation of tissue factor pathway inhibitor-coagulation factor Xa complexes. J Biol Chem. 1997;272(27):16838-44. PMID:9201990 
  56. Adenovirus mediated gene transfer into rat lung grafts at the time of harvest. Eur J Cardiothorac Surg. 1997;11(6):1023-8; discussion 1029. PMID:9237582 
  57. Identification of a region within the ubiquitin-activating enzyme required for nuclear targeting and phosphorylation. J Biol Chem. 1997;272(16):10895-903. PMID:9099746 
  58. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J Biol Chem. 1997;272(14):9002-10. PMID:9083024 
  59. The low-density lipoprotein receptor-related protein, a multifunctional apolipoprotein E receptor, modulates hippocampal neurite development. J Neurochem. 1997;68(2):587-95. PMID:9003044 
  60. Growth hormone-induced signal tranduction depends on an intact ubiquitin system. J Biol Chem. 1997;272(1):40-3. PMID:8995223 
  61. The low density lipoprotein receptor-related protein can function independently from heparan sulfate proteoglycans in tissue factor pathway inhibitor endocytosis. J Biol Chem. 1996;271(42):25873-9. PMID:8824219 
  62. The ubiquitin conjugation system is required for ligand-induced endocytosis and degradation of the growth hormone receptor. EMBO J. 1996;15(15):3806-12. PMCID:PMC452061  PMID:8670885 
  63. The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J Biol Chem. 1996;271(26):15608-14. PMID:8663123 
  64. The spectrum of brain MR abnormalities in sickle-cell disease: a report from the Cooperative Study of Sickle Cell Disease. AJNR Am J Neuroradiol. 1996;17(5):965-72. PMID:8733975 
  65. Receptor-mediated endocytosis of coagulation factor Xa requires cell surface-bound tissue factor pathway inhibitor. J Biol Chem. 1996;271(16):9497-502. PMID:8621621 
  66. The 39-kDa protein regulates LRP activity in cultured endothelial and smooth muscle cells. Eur J Cell Biol. 1996;69(2):156-65. PMID:8907616 
  67. Isolation, characterization, and partial purification of a novel ubiquitin-protein ligase, E3. Targeting of protein substrates via multiple and distinct recognition signals and conjugating enzymes. J Biol Chem. 1996;271(1):302-10. PMID:8550577 
  68. Protein synthesis elongation factor EF-1 alpha is an isopeptidase essential for ubiquitin-dependent degradation of certain proteolytic substrates. Adv Exp Med Biol. 1996;389:209-19. PMID:8861013 
  69. Receptor cell biology: receptor-mediated endocytosis. Pediatr Res. 1995;38(6):835-43. doi:10.1203/00006450-199512000-00003  PMID:8618782 
  70. Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: identification and characterization of the conjugating enzymes. Mol Cell Biol. 1995;15(12):7106-16. PMCID:PMC230966  PMID:8524278 
  71. Two receptor systems are involved in the plasma clearance of tissue factor pathway inhibitor in vivo. J Biol Chem. 1995;270(42):24800-4. PMID:7559599 
  72. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci U S A. 1995;92(21):9480-4. PMCID:PMC40825  PMID:7568158 
  73. Analysis of ligand binding to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. Evidence that lipoprotein lipase and the carboxyl-terminal domain of the receptor-associated protein bind to the same site. J Biol Chem. 1995;270(40):23713-9. PMID:7559542 
  74. Ubiquitin-mediated processing of NF-kappa B transcriptional activator precursor p105. Reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J Biol Chem. 1995;270(37):21707-14. PMID:7665588 
  75. Binding and endocytosis of 39 kDa protein by MDBK cells. J Cell Physiol. 1995;164(2):441-7. doi:10.1002/jcp.1041640225  PMID:7542665 
  76. Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo. J Clin Invest. 1995;96(2):1164-8. doi:10.1172/JCI118105  PMCID:PMC185308  PMID:7635954 
  77. 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J. 1995;14(10):2269-80. PMCID:PMC398334  PMID:7774585 
  78. The carboxy terminus of tissue factor pathway inhibitor is required for interacting with hepatoma cells in vitro and in vivo. J Clin Invest. 1995;95(4):1773-81. doi:10.1172/JCI117855  PMCID:PMC295702  PMID:7706485 
  79. Sites within the 39-kDa protein important for regulating ligand binding to the low-density lipoprotein receptor-related protein. Biochemistry. 1995;34(10):3404-15. PMID:7533537 
  80. Human ubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J Biol Chem. 1994;269(52):33171-8. PMID:7528747 
  81. Rescue of the complex temperature-sensitive phenotype of Chinese hamster ovary E36ts20 cells by expression of the human ubiquitin-activating enzyme cDNA. Biochem J. 1994;304 ( Pt 3):1015-20. PMCID:PMC1137433  PMID:7818464 
  82. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. J Biol Chem. 1994;269(47):29874-82. PMID:7961982 
  83. LRP and the receptor-mediated endocytosis of plasminogen activators. Ann N Y Acad Sci. 1994;737:70-87. PMID:7944155 
  84. Identification of domains on the 39-kDa protein that inhibit the binding of ligands to the low density lipoprotein receptor--related protein. Ann N Y Acad Sci. 1994;737:514-7. PMID:7524434 
  85. Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci U S A. 1994;91(16):7648-52. PMCID:PMC44459  PMID:8052636 
  86. Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neurons. J Biol Chem. 1994;269(28):18521-8. PMID:7518435 
  87. The low density lipoprotein receptor-related protein mediates the cellular degradation of tissue factor pathway inhibitor. Proc Natl Acad Sci U S A. 1994;91(14):6664-8. PMCID:PMC44263  PMID:7517557 
  88. Nuclear localization of the ubiquitin-activating enzyme, E1, is cell-cycle-dependent. Biochem J. 1994;300 ( Pt 3):701-8. PMCID:PMC1138223  PMID:8010951 
  89. Cellular receptors for the plasminogen activators. Blood. 1994;83(12):3427-36. PMID:8204869 
  90. Purification and characterization of a novel species of ubiquitin-carrier protein, E2, that is involved in degradation of non-"N-end rule" protein substrates. J Biol Chem. 1994;269(13):9574-81. PMID:8144544 
  91. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus. Exp Cell Res. 1994;211(2):353-9. doi:10.1006/excr.1994.1098  PMID:8143783 
  92. Quantitative cell biology. Science. 1994;263(5154):1782. doi:10.1126/science.263.5154.1782  PMID:17795389 
  93. Binding analysis of amino-terminal and carboxyl-terminal regions of the 39-kDa protein to the low density lipoprotein receptor-related protein. J Biol Chem. 1994;269(5):3325-30. PMID:7508911 
  94. The ubiquitin-mediated proteolytic pathway: mechanisms of recognition of the proteolytic substrate and involvement in the degradation of native cellular proteins. FASEB J. 1994;8(2):182-91. PMID:8119489 
  95. Interaction of a 39 kDa protein with the low-density-lipoprotein-receptor-related protein (LRP) on rat hepatoma cells. Biochem J. 1993;296 ( Pt 3):867-75. PMCID:PMC1137774  PMID:8280086 
  96. Identification of domains on the 39-kDa protein that inhibit the binding of ligands to the low density lipoprotein receptor-related protein. J Biol Chem. 1993;268(29):22046-54. PMID:7691821 
  97. 39-kD protein inhibits tissue-type plasminogen activator clearance in vivo. J Clin Invest. 1993;92(2):937-44. doi:10.1172/JCI116669  PMCID:PMC294933  PMID:8349826 
  98. Receptor-mediated endocytosis of tissue-type plasminogen activator by low density lipoprotein receptor-related protein on human hepatoma HepG2 cells. J Biol Chem. 1993;268(17):13002-9. PMID:8389767 
  99. Immunofluorescent localization of the ubiquitin-activating enzyme, E1, to the nucleus and cytoskeleton. Am J Physiol. 1993;264(1 Pt 1):C93-102. PMID:8430776 
  100. Endocytosis and lysosomal delivery of tissue plasminogen activator-inhibitor 1 complexes in Hep G2 cells. Blood. 1992;80(11):2746-54. PMID:1333299 
  101. Ubiquitin-mediated protein modification and degradation. Am J Respir Cell Mol Biol. 1992;7(5):463-8. doi:10.1165/ajrcmb/7.5.463  PMID:1329865 
  102. Alterations in the protein composition of maturing phagosomes. J Clin Invest. 1992;90(5):1978-83. doi:10.1172/JCI116077  PMCID:PMC443261  PMID:1430221 
  103. Low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci U S A. 1992;89(16):7427-31. PMCID:PMC49723  PMID:1502154 
  104. Identification and partial characterization by chemical cross-linking of a binding protein for tissue-type plasminogen activator (t-PA) on rat hepatoma cells. A plasminogen activator inhibitor type 1-independent t-PA receptor. J Biol Chem. 1992;267(22):15595-602. PMID:1322401 
  105. Ubiquitin-activating enzyme, E1, is associated with maturation of autophagic vacuoles. J Cell Biol. 1992;118(2):301-8. PMCID:PMC2290057  PMID:1321157 
  106. Immunoelectron microscopic localization of the ubiquitin-activating enzyme E1 in HepG2 cells. Proc Natl Acad Sci U S A. 1992;89(12):5542-6. PMCID:PMC49328  PMID:1376922 
  107. tsBN75 and tsBN423, temperature-sensitive x-linked mutants of the BHK21 cell line, can be complemented by the ubiquitin-activating enzyme E1 cDNA. Biochem Biophys Res Commun. 1992;184(2):1015-21. PMID:1575720 
  108. Stress-induced alterations in autophagic pathway: relationship to ubiquitin system. Am J Physiol. 1992;262(4 Pt 1):C1031-8. PMID:1314483 
  109. Transport of phagosomal components to an endosomal compartment. J Biol Chem. 1992;267(1):126-32. PMID:1730578 
  110. Assays for phagosome-endosome fusion and phagosome protein recycling. Methods Enzymol. 1992;219:21-31. PMID:1487994 
  111. Purification and characterization of a novel protein that is required for degradation of N-alpha-acetylated proteins by the ubiquitin system. J Biol Chem. 1991;266(29):19221-31. PMID:1655778 
  112. Reconstitution of human hepatoma endosome-endosome fusion in vitro: potential roles for an endoprotease and a phosphoprotein phosphatase. Eur J Cell Biol. 1991;55(2):328-35. PMID:1657609 
  113. Late endosomes derive from early endosomes by maturation. Cell. 1991;65(3):417-27. PMID:1850321 
  114. Identification of an endosome-specific antigen. Exp Cell Res. 1991;194(1):128-34. PMID:1849826 
  115. Molecular cloning of a rat uterine gap junction protein and analysis of gene expression during gestation. Am J Physiol. 1991;260(5 Pt 1):E787-93. PMID:1852114 
  116. A pool of intracellular phosphorylated asialoglycoprotein receptors which is not involved in endocytosis. J Biol Chem. 1991;266(9):5438-44. PMID:2005089 
  117. Binding of plasminogen activator inhibitor type-1 to extracellular matrix of Hep G2 cells. Evidence that the binding protein is vitronectin. J Biol Chem. 1991;266(7):4334-40. PMID:1705551 
  118. The ubiquitin-activating enzyme, E1, is required for stress-induced lysosomal degradation of cellular proteins. J Biol Chem. 1991;266(6):3602-10. PMID:1847380 
  119. Low concentrations of primaquine inhibit degradation but not receptor-mediated endocytosis of asialoorosomucoid by HepG2 cells. Exp Cell Res. 1991;192(2):581-6. PMID:1703087 
  120. Degradation of MYCN oncoprotein by the ubiquitin system. Prog Clin Biol Res. 1991;366:37-43. PMID:1648744 
  121. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci U S A. 1991;88(1):139-43. PMCID:PMC50765  PMID:1846034 
  122. The ubiquitin-activating enzyme is required for lysosomal degradation of cellular proteins under stress. Biomed Biochim Acta. 1991;50(4-6):321-32. PMID:1801698 
  123. Molecular cloning, sequence, and tissue distribution of the human ubiquitin-activating enzyme E1. Proc Natl Acad Sci U S A. 1991;88(1):258-62. PMCID:PMC50789  PMID:1986373 
  124. Trafficking of the transferrin receptor. Targeted Diagn Ther. 1991;4:267-304. PMID:1797159 
  125. Trafficking of asialoglycoproteins and the asialoglycoprotein receptor. Targeted Diagn Ther. 1991;4:3-39. PMID:1797161 
  126. Modulation of transferrin-receptor activity and recycling after induced differentiation of BeWo choriocarcinoma cells. Biochem J. 1990;270(2):451-7. PMCID:PMC1131743  PMID:2400396 
  127. Identification of determinants involved in binding of tissue-type plasminogen activator-plasminogen activator inhibitor type 1 complexes to HepG2 cells. J Biol Chem. 1990;265(24):14093-9. PMID:2167306 
  128. Functional and ultrastructural evidence for intracellular formation of major histocompatibility complex class II-peptide complexes during antigen processing. Proc Natl Acad Sci U S A. 1990;87(14):5553-7. PMCID:PMC54363  PMID:2371288 
  129. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990;186(2):306-16. PMID:2153559 
  130. Cell biology of intracellular protein trafficking. Annu Rev Immunol. 1990;8:195-229. doi:10.1146/annurev.iy.08.040190.001211  PMID:2160830 
  131. How are substrates recognized by the ubiquitin-mediated proteolytic system? Trends Biochem Sci. 1989;14(12):483-8. PMID:2696178 
  132. Synthesis of stress proteins is increased in individuals with homozygous PiZZ alpha 1-antitrypsin deficiency and liver disease. J Clin Invest. 1989;84(5):1555-61. doi:10.1172/JCI114332  PMCID:PMC304021  PMID:2553776 
  133. Interactions between tissue-type plasminogen activator and extracellular matrix-associated plasminogen activator inhibitor type 1 in the human hepatoma cell line HepG2. J Biol Chem. 1989;264(30):18180-7. PMID:2553701 
  134. Developmental changes in the expression of genes involved in cholesterol biosynthesis and lipid transport in human and rat fetal and neonatal livers. Biochim Biophys Acta. 1989;1003(3):293-300. PMID:2472835 
  135. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science. 1989;244(4911):1480-3. PMID:2544030 
  136. Relations between the intracellular pathways of the receptors for transferrin, asialoglycoprotein, and mannose 6-phosphate in human hepatoma cells. J Cell Biol. 1989;108(6):2137-48. PMCID:PMC2115624  PMID:2544602 
  137. Catabolism of tissue-type plasminogen activator by the human hepatoma cell line Hep G2. Modulation by plasminogen activator inhibitor type 1. J Biol Chem. 1989;264(13):7228-35. PMID:2540181 
  138. Effect of ATP depletion and temperature on the transferrin-mediated uptake and release of iron by BeWo choriocarcinoma cells. Biochem J. 1989;259(3):685-92. PMCID:PMC1138573  PMID:2730581 
  139. Receptor-mediated delivery of drugs to hepatocytes Advanced Drug Delivery Reviews. 1989;4(1):49-63. 
  140. Globin gene expression in erythroid human fetal liver cells. J Clin Invest. 1989;83(3):1032-8. doi:10.1172/JCI113944  PMCID:PMC303780  PMID:2921315 
  141. Purification, characterization, and rapid inactivation of thermolabile ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. J Biol Chem. 1989;264(4):2060-8. PMID:2914892 
  142. The ubiquitin-dependent proteolytic pathway: specificity of recognition of the proteolytic substrates. Revis Biol Celular. 1989;20:217-34. PMID:2561543 
  143. Quantitative evaluation of receptor-mediated endocytosis. Methods Cell Biol. 1989;32:305-28. PMID:2558276 
  144. Metalloendoprotease inhibitors block protein synthesis, intracellular transport, and endocytosis in hepatoma cells. J Biol Chem. 1988;263(34):18197-204. PMID:2848028 
  145. A pH-dependent reversible conformational transition of the human transferrin receptor leads to self-association. J Biol Chem. 1988;263(31):16309-15. PMID:3182794 
  146. Immunoelectron microscopic localization of ubiquitin in hepatoma cells. EMBO J. 1988;7(10):2961-6. PMCID:PMC454677  PMID:2846272 
  147. Asialoglycoprotein receptor phosphorylation and receptor-mediated endocytosis in hepatoma cells. Effect of phorbol esters. J Biol Chem. 1988;263(26):13159-66. PMID:3166456 
  148. Receptor-mediated endocytosis of tissue-type plasminogen activator by the human hepatoma cell line Hep G2. J Biol Chem. 1988;263(22):10587-94. PMID:2839497 
  149. A high yield purification of the human transferrin receptor and properties of its major extracellular fragment. J Biol Chem. 1988;263(17):8318-25. PMID:3372526 
  150. Effect of primaquine on the topology of Na,K-ATPase and the receptor for asialoglycoproteins. Prog Clin Biol Res. 1988;268B:437-42. PMID:2851823 
  151. Induction of the stress response in alpha 1-antitrypsin deficiency. Trans Assoc Am Physicians. 1988;101:33-41. PMID:2855901 
  152. Golgi galactosyltransferase contains serine-linked phosphate. Eur J Biochem. 1987;169(2):307-11. PMID:3121312 
  153. Mechanism of the phorbol ester-mediated redistribution of asialoglycoprotein receptor: selective effects on receptor recycling pathways in Hep G2 cells. Mol Pharmacol. 1987;32(3):348-55. PMID:3478583 
  154. Iron metabolism in BeWo chorion carcinoma cells. Transferrin-mediated uptake and release of iron. J Biol Chem. 1987;262(18):8910-6. PMID:3597399 
  155. Membranes of sorting organelles display lateral heterogeneity in receptor distribution. J Cell Biol. 1987;104(6):1715-23. PMCID:PMC2114492  PMID:3034919 
  156. Ligand- and weak base-induced redistribution of asialoglycoprotein receptors in hepatoma cells. J Cell Biol. 1987;104(6):1647-54. PMCID:PMC2114494  PMID:3034918 
  157. Receptor mediated endocytosis: intracellular pathways for receptor and ligand. Prog Clin Biol Res. 1987;249:77-86. PMID:2823293 
  158. Immunogold cytochemistry of cytochromes P-450 in porcine adrenal cortex. Two enzymes (side-chain cleavage and 11 beta-hydroxylase) are co-localized in the same mitochondria. Histochemistry. 1987;86(6):551-7. PMID:3610669 
  159. Regulation by phorbol esters of asialoglycoprotein and transferrin receptor distribution and ligand affinity in a hepatoma cell line. J Biol Chem. 1986;261(32):15081-9. PMID:3021765 
  160. Antibody-induced receptor loss. Different fates for asialoglycoproteins and the asialoglycoprotein receptor in HepG2 cells. J Biol Chem. 1986;261(32):15225-32. PMID:3021767 
  161. Receptor-mediated endocytosis. J Clin Invest. 1986;77(3):657-62. doi:10.1172/JCI112359  PMCID:PMC423448  PMID:2869052 
  162. Separation of endocytic from exocytic coated vesicles using a novel cholinesterase mediated density shift technique. Cell. 1986;44(3):497-506. PMID:2867830 
  163. Receptor-mediated endocytosis in liver parenchymal cells. Int Rev Exp Pathol. 1986;29:113-71. PMID:3023254 
  164. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells. J Cell Biol. 1985;101(2):531-9. PMCID:PMC2113684  PMID:2991301 
  165. Cell-free synthesis and co-translational processing of the human asialoglycoprotein receptor. Eur J Biochem. 1985;150(2):409-14. PMID:4018091 
  166. Immunoelectron microscopic localization of acidic intracellular compartments in hepatoma cells. EMBO J. 1985;4(4):899-904. PMCID:PMC554277  PMID:2990909 
  167. Primaquine and lysosomotropic amines inhibit malaria sporozoite entry into human liver cells. Mol Biochem Parasitol. 1985;14(3):305-11. PMID:3887157 
  168. In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. Am J Trop Med Hyg. 1985;34(2):216-22. PMID:2984950 
  169. Sequence of human asialoglycoprotein receptor cDNA. An internal signal sequence for membrane insertion. J Biol Chem. 1985;260(4):1979-82. PMID:2982798 
  170. Immunoradiometric assay to measure the in vitro penetration of sporozoites of malaria parasites into hepatoma cells. J Immunol. 1985;134(2):1202-5. PMID:2981261 
  171. An alternative route of infection for viruses: entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc Natl Acad Sci U S A. 1985;82(4):978-82. PMCID:PMC397176  PMID:2983337 
  172. Receptor-mediated endocytosis and targeted drug delivery. Hepatology. 1985;5(5):899-901. PMID:2993150 
  173. Cell biology of the asialoglycoprotein receptor system: a model of receptor-mediated endocytosis. Int Rev Cytol. 1985;97:47-95. PMID:3000971 
  174. Cellular pathways of galactose-terminal ligand movement in a cloned human hepatoma cell line. Mol Pharmacol. 1984;26(3):509-19. PMID:6092900 
  175. A cycloheximide-resistant pool of receptors for asialoglycoproteins and mannose 6-phosphate residues in the Golgi complex of hepatocytes. EMBO J. 1984;3(11):2677-85. PMCID:PMC557749  PMID:6391915 
  176. Phosphorylation of the human asialoglycoprotein receptor. Biochem J. 1984;223(2):481-6. PMCID:PMC1144322  PMID:6541907 
  177. Functional size of the human asialoglycoprotein receptor as determined by radiation inactivation. J Biol Chem. 1984;259(19):12025-9. PMID:6090451 
  178. Ultrastructure of in vitro cultured exoerythrocytic stage of Plasmodium berghei in a hepatoma cell line. Am J Trop Med Hyg. 1984;33(5):792-9. PMID:6091467 
  179. Influence of the N-linked oligosaccharides on the biosynthesis, intracellular routing, and function of the human asialoglycoprotein receptor. J Biol Chem. 1984;259(16):10414-21. PMID:6088499 
  180. Intracellular receptor sorting during endocytosis: comparative immunoelectron microscopy of multiple receptors in rat liver. Cell. 1984;37(1):195-204. PMID:6327050 
  181. Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. J Immunol. 1984;132(2):909-13. PMID:6317752 
  182. Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells. J Cell Biol. 1984;98(2):732-8. PMCID:PMC2113087  PMID:6319432 
  183. The hepatic asialoglycoprotein receptor. CRC Crit Rev Biochem. 1984;16(3):207-33. PMID:6383714 
  184. Regulation of low density lipoprotein receptor function in a human hepatoma cell line. Hepatology. 1984;4(5):897-901. PMID:6090292 
  185. The pathway of the asialoglycoprotein-ligand during receptor-mediated endocytosis: a morphological study with colloidal gold/ligand in the human hepatoma cell line, Hep G2. Eur J Cell Biol. 1983;32(1):38-44. PMID:6321187 
  186. Biosynthesis of the human asialoglycoprotein receptor. J Biol Chem. 1983;258(18):11249-55. PMID:6309839 
  187. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983;258(16):9681-9. PMID:6309781 
  188. Sendai virus host cell interaction: Defining the roles of the viral glycoproteins in adsorption and fusion by means of the asialoglycoprotein receptor. Proceedings of the 7th International Symposium on Glycoconjugates, Ed. M.A. Chester, Lund-Ronneby, Sweden, July 17-23, 1983, pp 656-657 1983. 
  189. Entry of Plasmodium berghei sporozoites into cultured cells, and their transformation into trophozoites. Am J Trop Med Hyg. 1983;32(4):685-90. PMID:6349398 
  190. In vitro cultivation of the exoerythrocytic stage of Plasmodium berghei in a hepatoma cell line. Am J Trop Med Hyg. 1983;32(4):682-4. PMID:6349397 
  191. The asialoglycoprotein receptor internalizes and recycles independently of the transferrin and insulin receptors. Cell. 1983;32(1):267-75. PMID:6297785 
  192. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983;32(1):277-87. PMID:6130851 
  193. Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors. J Cell Biochem. 1983;23(1-4):107-30. doi:10.1002/jcb.240230111  PMID:6327736 
  194. Recycling of the asialoglycoprotein receptor: biochemical and immunocytochemical evidence. Philos Trans R Soc Lond B Biol Sci. 1982;300(1099):229-35. PMID:6131461 
  195. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatoma cell line. J Biol Chem. 1982;257(8):4230-7. PMID:6279629 
  196. Immunocytochemical localization of the receptor for asialoglycoprotein in rat liver cells. J Cell Biol. 1982;92(3):865-70. PMCID:PMC2112051  PMID:6282897 
  197. Pneumococcal vaccine failure. Am J Dis Child. 1981;135(12):1149-50. PMID:7315817 
  198. Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. J Biol Chem. 1981;256(17):8878-81. PMID:6267054 
  199. Identification and quantification of the rat hepatocyte asialoglycoprotein receptor. Proc Natl Acad Sci U S A. 1981;78(6):3348-52. PMCID:PMC319565  PMID:6267585 
  200. Synthesis and assembly of membrane and organelle proteins. Int Rev Cytol Suppl. 1981;12:247-307. PMID:7019120 
  201. Difficulties in the quantification of asialoglycoprotein receptors on the rat hepatocyte. J Biol Chem. 1980;255(19):9033-6. PMID:7410410 
  202. Management of acute asthma in childhood. A randomized evaluation of beta-adrenergic agents. Am J Dis Child. 1980;134(5):474-8. PMID:6990745 
  203. Treatment of a neonate with propionic acidaemia and severe hyperammonaemia by peritoneal dialysis. Arch Dis Child. 1979;54(12):962-5. PMCID:PMC1545766  PMID:533302 
  204. Effect of phototherapy on sister chromatid exchange in premature infants. Lancet. 1978;2(8081):157-8. PMID:78359 
  205. Abnormal platelet aggregation in severe combined immunodeficiency disease with adenosine deaminase deficiency. Br J Haematol. 1978;39(2):189-94. PMID:678472 
  206. Glucose production in midterm human fetus. I. Autoregulation of glucose uptake. Am J Physiol. 1978;234(6):E560-7. PMID:566517 
  207. Demonstration of adenosine receptor on human lymphocytes in vitro and its possible role in the adenosine deaminase-deficient form of severe combined immunodeficiency. Clin Immunol Immunopathol. 1978;9(4):499-505. PMID:206401 
  208. Human amnion metabolism. I. In vitro maintenance. Am J Obstet Gynecol. 1977;127(5):470-4. PMID:836644 
  209. Human amnion metabolism. II. Incorporation of fatty acids into tissue phospholipids in vitro. Am J Obstet Gynecol. 1977;127(5):475-81. PMID:836645 
  210. Control of parturition in man. Biol Reprod. 1977;16(1):39-56. PMID:318871 
  211. Adenine and adenosine metabolism in lymphocytes deficient in adenosine deaminase (ADA) activity. Adv Exp Med Biol. 1977;76A:456-62. PMID:855721 
  212. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N Engl J Med. 1976;295(24):1337-43. doi:10.1056/NEJM197612092952402  PMID:980079 
  213. Effects of pregnancy on hemoglobin AIc in normal, gestational diabetic, and diabetic women. Diabetes. 1976;25(12):1118-22. PMID:992231 
  214. Effect of hypoxia on erythroblasts from avian fetal liver: adenosine triphosphate levels and hemoglobin synthesis. Pediatr Res. 1976;10(9):796-801. PMID:958752 
  215. Ornithine decarboxylase activity in human fetal liver. Pediatr Res. 1976;10(4):224-6. doi:10.1203/00006450-197604000-00004  PMID:1272626 
  216. The metabolism of carbohydrate. Major Probl Clin Pediatr. 1976;3:3-28. PMID:185470 
  217. Hormonal regulation of glycogen metabolism in human fetal liver. I. Normal development and effects of dibutyryl cyclic AMP, glucagon, and insulin in liver explants. Diabetes. 1975;24(12):1101-12. PMID:172397 
  218. Hormonal regulation of glycogen metabolism in human fetal liver. II. Regulation of glycogen synthase activity. Diabetes. 1975;24(12):1113-22. PMID:811498 
  219. Letter: Serum lactic dehydrogenase and ovarian carcinoma. Am J Obstet Gynecol. 1975;123(1):106-7. PMID:1180276 
  220. Hormonal regulation of incorporation of alanine-U-14C into glucose in human fetal liver explants. Effect of dibutyryl cyclic AMP, glucagon, insulin, and triamcinolone. Diabetes. 1975;24(7):650-7. PMID:169172 
  221. Hormonal regulation of amino acid accumulation in human fetal liver explants. Effects of dibutyryl cyclic AMP, glucogon and insulin. Biochim Biophys Acta. 1974;362(2):276-89. PMID:4371400 
  222. Hormonal regulation of glucose production in human fetal liver Case Western Reserve University, Ph.D. Dissertation. 1974. 
  223. Effect of dibutyryl cyclic amp on glucose-6-phosphatase activity in human fetal liver explants. Biochim Biophys Acta. 1974;343(3):500-9. PMID:4366100 
  224. Hormonal regulation of glycogen metabolism in neonatal rat liver. Biochem J. 1973;134(4):985-93. PMCID:PMC1177906  PMID:4357717 
  225. Enzyme induction in human fetal liver in organ culture. Enzyme. 1973;15(1):330-9. PMID:4150364 
  226. Influence of glucagon, 6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate and triamcinolone on the arginine synthetase system in perinatal rat liver. Biochem J. 1972;126(1):89-98. PMCID:PMC1178354  PMID:4342387 
  227. Perfusion of isolated human fetal liver: synthesis and release of -fetoprotein and albumin. Int J Cancer. 1971;8(2):250-8. PMID:4109106 
  228. Induction of Tyrosine-a-Ketoglutarate Transaminase in Fetal Rat and Fetal Human Liver in Organ Culture. doi:10.1203/00006450-197102000-00004 Pediatr Res.. 1971;5(2):70-6. 
  229. Rate of urea synthesis in normal and cirrhotic rat liver with reference to the arginine synthetase system. Scand J Gastroenterol. 1970;5(5):375-80. PMID:5455822 
Last updated: 05/09/2017
Wash U School of Medicine
Children's Hospital St. Louis
Children's Discovery Institute
© 2017 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130