Bess A. Marshall, M.D.  bmarshall@wustl.edu

Profile picture
Professor of Pediatrics, Endocrinology and Diabetes
Endocrinology and Diabetes

phone: (314) 454-6051

Clinical Interests

I take care of children, adolescents, and young adults with diabetes mellitus and endocrine disorders. I am the Medical Director of the Washington University Wolfram Syndrome Clinic and offer care for children, adolescents, and young adults with Wolfram Syndrome. The Washington University Wolfram Syndrome Study Group is conducting a longitudinal natural history study of Wolfram Syndrome, also known as DIDMOAD Syndrome. The clinic is funded by a grant from the National Institutes of Health (Tracking Neurodegeneration in Early Wolfram Syndrome (TRACK), Dr. Tamara Hershey, Principal Investigator). The TRACK team includes Dr. Hershey, Scientific Director along with members in endocrinology, ophthalmology, neurology, audiology, urology, neuroimaging, physical and occupational therapy, psychiatry, genetic counseling, and more. Most have more than 10 years of experience seeing and evaluating more than 40 children and young adults with Wolfram Syndrome. I am happy to provide information to physicians and patients regarding Wolfram Syndrome clinical care and recommendations. Clinical consultations can be arranged with me or any member of the Wolfram team by contacting me or Dr. Hershey. I also have a special interest in neonatal diabetes and provide care or consultation regarding infants, children, and adolescents with neonatal diabetes.

Education

  • BS, Vanderbilt University College of Arts and Science1982
  • MD, Vanderbilt University1986

Training

  • Residency, University of Texas, Southwestern, Health Science Center at Dallas1987 - 1990
  • Fellowship, Pediatric Endocrinology, Washington University School of Medicine1990 - 1993

Licensure and Board Certification

  • 1990 - PresMO, State Medical License
  • 1991 - PresAmerican Board of Pediatrics
  • 1995 - PresAmerican Board of Pediatrics, Endocrinology

Honors and Awards

  • National Merit Scholar
  • Phi Beta Kappa
  • Scholar of the Child Health Research Center of Excellence in Developmental Biology

Recent Publications view all (51)


Publication Co-Authors

  1. Phenotype and response to growth hormone therapy in siblings with B4GALT7 deficiency. Bone. 2019;124:14-21. doi:10.1016/j.bone.2019.03.029  PMCID:PMC6551519  PMID:30914273 
  2. Pancreatic stone protein/regenerating protein is a potential biomarker for endoplasmic reticulum stress in beta cells. Sci. Rep.. 2019;9(1):5199. doi:10.1038/s41598-019-41604-4   
  3. Lower Urinary Tract Dysfunction and Associated Pons Volume in Patients with Wolfram Syndrome. J Urol. 2018. PMID:29883657 
  4. Posaconazole-induced hypertension and hypokalemia due to inhibition of the 11beta-hydroxylase enzyme. Clin Kidney J. 2018;11(5):691-693. doi:10.1093/ckj/sfx156   
  5. Monogenic diabetes syndromes: Locus-specific databases for Alström, Wolfram, and Thiamine-responsive megaloblastic anemia. Hum Mutat. 2017;38(7):764-777. PMCID:PMC5535005  PMID:28432734 
  6. Sulfonylurea challenge test in subjects diagnosed with type 1 diabetes mellitus. Pediatr Diabetes. 2017. PMCID:PMC5522783  PMID:28111849 
  7. Neuroimaging evidence of deficient axon myelination in Wolfram syndrome. Sci Rep. 2016;6:21167. PMCID:PMC4758056  PMID:26888576 
  8. Selective cognitive and psychiatric manifestations in Wolfram Syndrome. Orphanet J Rare Dis. 2015;10(1):66. doi:10.1186/s13023-015-0282-1  PMCID:PMC4450481  PMID:26025012 
  9. Remission of severe neonatal diabetes with very early sulfonylurea treatment. Diabetes Care. 2015;38(3):e38-9. doi:10.2337/dc14-2124  PMID:25715421 
  10. A calcium-dependent protease as a potential therapeutic target for Wolfram syndrome. Proc Natl Acad Sci U S A. 2014;111(49):E5292-301. doi:10.1073/pnas.1421055111  PMCID:PMC4267371  PMID:25422446 
  11. Ophthalmologic correlates of disease severity in children and adolescents with Wolfram syndrome. J AAPOS. 2014;18(5):461-465.e1. doi:10.1016/j.jaapos.2014.07.162  PMID:25439303 
  12. Phenotypic characteristics of early Wolfram syndrome. Orphanet J Rare Dis. 2013;8:64. doi:10.1186/1750-1172-8-64  PMCID:PMC3651298  PMID:23981289 
  13. Early presentation of gait impairment in Wolfram Syndrome. Orphanet J Rare Dis. 2012;7:92. doi:10.1186/1750-1172-7-92  PMCID:PMC3551701  PMID:23217193 
  14. Reliability and validity of the Wolfram Unified Rating Scale (WURS). Orphanet J Rare Dis. 2012;7:89. doi:10.1186/1750-1172-7-89  PMCID:PMC3552944  PMID:23148655 
  15. Balance impairment in individuals with Wolfram syndrome. Gait Posture. 2012;36(3):619-24. doi:10.1016/j.gaitpost.2012.06.008  PMCID:PMC3417287  PMID:22771154 
  16. Early brain vulnerability in Wolfram syndrome. PLoS One. 2012;7(7):e40604. doi:10.1371/journal.pone.0040604  PMCID:PMC3394712  PMID:22792385 
  17. Successful sulfonylurea treatment of an insulin-naïve neonate with diabetes mellitus due to a KCNJ11 mutation. Pediatr Diabetes. 2010;11(4):286-8. doi:10.1111/j.1399-5448.2009.00557.x  PMCID:PMC3245710  PMID:19656320 
  18. Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene. Gastroenterology. 2003;125(4):1164-74. PMID:14517799 
  19. Fatal malignant hyperthermia-like syndrome with rhabdomyolysis complicating the presentation of diabetes mellitus in adolescent males. Pediatrics. 2003;111(6 Pt 1):1447-52. PMID:12777570 
  20. Hyperinsulinism induced by targeted suppression of beta cell KATP channels. Proc Natl Acad Sci U S A. 2002;99(26):16992-7. doi:10.1073/pnas.012479199  PMCID:PMC139257  PMID:12486236 
  21. Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. Am J Physiol Endocrinol Metab. 2002;283(2):E241-50. doi:10.1152/ajpendo.00060.2002  PMID:12110528 
  22. Transgenic overexpression of hexokinase II in skeletal muscle does not increase glucose disposal in wild-type or Glut1-overexpressing mice. J Biol Chem. 2000;275(29):22381-6. doi:10.1074/jbc.M001946200  PMID:10764781 
  23. Defective insulin receptors in Rabson-Mendenhall syndrome cause complete peripheral insulin resistance but minimal hepatic insulin response remains. Pediatr Diabetes. 2000;1(2):66-73. doi:10.1034/j.1399-5448.2000.010203.x  PMID:15016231 
  24. Transgenic mice overexpressing GLUT-1 protein in muscle exhibit increased muscle glycogenesis after exercise. Am J Physiol Endocrinol Metab. 2000;278(4):E588-92. PMID:10751190 
  25. Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell. 2000;100(6):645-54. PMID:10761930 
  26. The head arterial glucose level is not the reference site for generation of the portal signal in conscious dogs. Am J Physiol. 1999;277(4 Pt 1):E678-84. PMID:10516127 
  27. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J Biol Chem. 1999;274(39):27426-32. PMID:10488074 
  28. Differential response to dietary fat in large (LG/J) and small (SM/J) inbred mouse strains. Physiol Genomics. 1999;1(1):33-9. PMID:11015559 
  29. GLUT-1 or GLUT-4 transgenes in obese mice improve glucose tolerance but do not prevent insulin resistance. Am J Physiol. 1999;276(2 Pt 1):E390-400. PMID:9950801 
  30. A high fat diet impairs stimulation of glucose transport in muscle. Functional evaluation of potential mechanisms. J Biol Chem. 1998;273(40):26157-63. PMID:9748297 
  31. Dissociation of GLUT4 translocation and insulin-stimulated glucose transport in transgenic mice overexpressing GLUT1 in skeletal muscle. J Biol Chem. 1998;273(29):18173-9. PMID:9660777 
  32. Identification of glucagon-like peptide 1 (GLP-1) actions essential for glucose homeostasis in mice with disruption of GLP-1 receptor signaling. Diabetes. 1998;47(4):632-9. PMID:9568697 
  33. Insulin unmasks a COOH-terminal Glut4 epitope and increases glucose transport across T-tubules in skeletal muscle. J Cell Biol. 1996;135(2):415-30. PMCID:PMC2121045  PMID:8896598 
  34. Differential effects of GLUT1 or GLUT4 overexpression on hexosamine biosynthesis by muscles of transgenic mice. J Biol Chem. 1996;271(38):23197-202. PMID:8798515 
  35. Counterregulation by epinephrine and glucagon during insulin-induced hypoglycemia in the conscious dog. Diabetes Res Clin Pract. 1996;31(1-3):45-56. PMID:8792101 
  36. Skeletal muscle glucose transport and metabolism are enhanced in transgenic mice overexpressing the Glut4 glucose transporter. J Biol Chem. 1995;270(4):1679-84. PMID:7829503 
  37. Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J Clin Invest. 1995;95(1):429-32. doi:10.1172/JCI117673  PMCID:PMC295454  PMID:7814644 
  38. Discrete structural domains determine differential endoplasmic reticulum to Golgi transit times for glucose transporter isoforms. J Biol Chem. 1994;269(51):32110-9. PMID:7798206 
  39. Differential effects of GLUT-1 or GLUT-4 overexpression on insulin responsiveness in transgenic mice. Am J Physiol. 1994;267(5 Pt 1):E738-44. PMID:7977725 
  40. Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1. Increased basal transport is associated with a defective response to diverse stimuli that activate GLUT4. J Biol Chem. 1994;269(28):18366-70. PMID:8034582 
  41. Domains that confer intracellular sequestration of the Glut4 glucose transporter in Xenopus oocytes. J Biol Chem. 1993;268(35):26193-9. PMID:8253739 
  42. Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J Biol Chem. 1993;268(25):18442-5. PMID:8360145 
  43. Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle. J Biol Chem. 1993;268(22):16113-5. PMID:8344895 
  44. Relationship between decrements in glucose level and metabolic response to hypoglycemia in absence of counterregulatory hormones in the conscious dog. Diabetes. 1992;41(10):1308-19. PMID:1397705 
  45. Role of hepatic nerves in response of liver to intraportal glucose delivery in dogs. Am J Physiol. 1992;262(5 Pt 1):E679-86. PMID:1590377 
  46. The effects of epinephrine on ketogenesis in the dog after a prolonged fast. Metabolism. 1991;40(10):1057-62. PMID:1943732 
  47. Factors which regulate net hepatic glucose uptake in vivo. JPEN J Parenter Enteral Nutr. 1991;15(3):71S-73S. PMID:1865561 
  48. Effects of small changes in glucagon on glucose production during a euglycemic, hyperinsulinemic clamp. Metabolism. 1991;40(1):66-71. PMID:1984573 
  49. Interaction between insulin and glucose-delivery route in regulation of net hepatic glucose uptake in conscious dogs. Diabetes. 1990;39(1):87-95. PMID:2210065 
  50. Importance of the route of intravenous glucose delivery to hepatic glucose balance in the conscious dog. J Clin Invest. 1987;79(2):557-65. doi:10.1172/JCI112847  PMCID:PMC424126  PMID:2879854 
  51. Insulin, glucagon, and glucose as regulators of hepatic glucose uptake and production in vivo. Diabetes Metab Rev. 1987;3(1):307-32. PMID:3552525 
Last updated: 11/03/2019
© 2019 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130