Barbara B. Warner, M.D., MSc  warnerbb@wustl.edu

Profile picture
Professor of Pediatrics, Newborn Medicine
Newborn Medicine

phone: (314) 454-6148

Clinical Interests

Our current research interests include 1) the effect of the neonatal microbiome on health and disease, with emphasis on necrotizing enterocolitis, and 2) the role of epidermal growth factor on preterm infant gut development including prevention of necrotizing enterocolitis

Education

  • BS, University of Dayton1979
  • MSc, University of Massachusetts1983
  • MD, University of Cincinnati1985

Training

  • Resident, Children’s Hospital Medical Center1985 - 1988
  • Neonatal - Perinatal Fellowship, University of Cincinnati1988 - 1991
  • William Cooper Procter Research Scholar, Children’s Hospital Medical Center1991 - 1994

Licensure and Board Certification

  • OH, Medical License
  • MO, Medical License
  • Neonatal-Perinatal Medicine, 1991 - Pres
  • Neonatal Resuscitation Program, 2012 - Pres

Honors

  • K12 Child Health Research Development Award, Cincinnati Children's Hospital1993 - 1994
  • Most Breast Feeding Supportive Physician, Ohio March 20042004 - 2004
  • “Best Doctors”- Cincinnati2005 - 2007
  • Cincinnati Business Courier’s 2007 Health Care Heroes Award2007 - 2007
  • “Best Doctors" in America2011 - 2018
  • “Best Doctors”-St Louis2011 - 2018
  • Academic Women's Network at Washington University in St Louis School of Medicine Mentor Award2018

Recent Publications view all (57)


  1. Determinants of Initial Antibiotic Duration in Very Low Birth Weight Neonates Infect Dis Ther. 2019;8(2):209-217. doi:10.1007/s40121-019-0241-6  PMCID:PMC 6522625  PMID:30825133 
  2. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes Nat Med. 2018;24(12):1822-1829. doi:10.1038/s41591-018-0216-2  PMCID:PMC6294307  PMID:30374198 
  3. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr Res. 2018. PMID:30283047 
  4. Remnant Small Bowel Length Correlates with Intestinal Dysbiosis and Linear Growth in Pediatric Short Bowel Syndrome J Am Coll Surg.. 2018;227(4):439-449. doi:10.1016/j.jamcollsurg.2018.07.657  PMCID:PMC6162148  PMID:30077861 
  5. Remnant Small Bowel Length in Pediatric Short Bowel Syndrome and the Correlation with Intestinal Dysbiosis and Linear Growth. J Am Coll Surg. 2018. PMID:30077861 
  6. Gut Sphingolipid Composition as a Prelude to Necrotizing Enterocolitis. Sci Rep. 2018;8(1):10984. PMCID:PMC6054655  PMID:30030452 
  7. Carriage of Cronobacter sakazakii in the Very Preterm Infant Gut. Clin Infect Dis. 2018;67(2):269-274. PMCID:PMC6030953  PMID:29394356 
  8. Survival among children with "Lethal" congenital contracture syndrome 11 caused by novel mutations in the gliomedin gene (GLDN). Hum Mutat. 2017;38(11):1477-1484. PMCID:PMC5638693  PMID:28726266 
  9. Independence of gut bacterial content and neonatal necrotizing enterocolitis severity. J Pediatric Surg(. 2017;52(6):993-998. doi:10.1016/j.jpedsurg.217.03.029  PMCID:PMC5473614  PMID:28410788 
  10. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. Microbiome. 2017;5(1):31. PMCID:PMC5343300  PMID:28274256 
  11. The Hidden Treasure of Neonatal Screening: Identifying New Risk Factors and Possible Mechanisms of Necrotizing Enterocolitis Through Big Data. J Pediatr. 2017;181:9-11. PMCID:PMC5507359  PMID:27931825 
  12. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes. 2016;7(5):443-9. PMCID:PMC5154371  PMID:27472377 
  13. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains in the neonatal intensive care unit: an infection prevention and patient safety challenge. Clin Microbiol Infect. 2016;22(7):645.e1-8. PMCID:PMC4987169  PMID:27126609 
  14. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534(7606):263-6. PMCID:PMC4902178  PMID:27279225 
  15. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2016;387(10031):1928-36. PMCID:PMC5553277  PMID:26969089 
  16. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbiol. 2016;1:16024. PMCID:PMC5031140  PMID:27572443 
  17. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228-34. doi:10.1038/nm.3950  PMID:26366711 
  18. Mutations in COQ4, an essential component of coenzyme Q biosynthesis, cause lethal neonatal mitochondrial encephalomyopathy. J Med Genet. 2015;52(9):627-35. PMID:26185144 
  19. Gut resistome development in healthy twin pairs in the first year of life. Microbiome. 2015;3:27. PMCID:PMC4480905  PMID:26113976 
  20. Impact of neonatal intensive care bed configuration on rates of late-onset bacterial sepsis and methicillin-resistant Staphylococcus aureus colonization. Infect Control Hosp Epidemiol. 2015;1-10. doi:10.1017/ice.2015.144  PMID:26108888 
  21. Gut Colonization of Healthy Children and Their Mothers With Pathogenic Ciprofloxacin-Resistant Escherichia coli. J Infect Dis. 2015. doi:10.1093/infdis/jiv278  PMID:25969564 
  22. Erratum: Gut resistome development in healthy twin pairs in the first year of life. Microbiome. 2015;3:29. PMCID:PMC4511998  PMID:26207183 
  23. Lungs, microbes and the developing neonate. Neonatology. 2015;107(4):337-43. PMCID:PMC4465447  PMID:26044101 
  24. Small bowel resection induces long-term changes in the enteric microbiota of mice. J Gastrointest Surg. 2014. doi:10.1007/s11605-014-2631-0  PMID:25183407 
  25. Patterned progression of bacterial populations in the premature infant gut. Proc Natl Acad Sci U S A. 2014;111(34):12522-7. doi:10.1073/pnas.1409497111  PMCID:PMC4151715  PMID:25114261 
  26. A fish tale worth telling: enteral fat for management of short gut syndrome. J Pediatr. 2014;165(2):226-7. PMID:24755239 
  27. Sepsis from the gut: the enteric habitat of bacteria that cause late-onset neonatal bloodstream infections. Clin Infect Dis. 2014;58(9):1211-8. doi:10.1093/cid/ciu084  PMCID:PMC3982840  PMID:24647013 
  28. Fecal carriage of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus in healthy children. Antimicrob Agents Chemother. 2014;58(2):1261-2. doi:10.1128/AAC.02466-13  PMCID:PMC3910844  PMID:24277049 
  29. Gastrointestinal viruses were not found as an aetiology of culture-negative illness in NICU patients. Arch Dis Child Fetal Neonatal Ed. 2013. doi:10.1136/archdischild-2013-303807  PMID:23563694 
  30. Biogeography of the ecosystems of the healthy human body. Genome Biol. 2013;14(1):R1. doi:10.1186/gb-2013-14-1-r1  PMCID:PMC4054670  PMID:23316946 
  31. Oseltamivir dosing in premature infants. J Infect Dis. 2012;206(6):847-50. doi:10.1093/infdis/jis471  PMCID:PMC3572879  PMID:22807525 
  32. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-7. doi:10.1038/nature11053  PMCID:PMC3376388  PMID:22699611 
  33. The age of necrotizing enterocolitis onset: an application of Sartwell's incubation period model. J Perinatol. 2011;31(8):519-23. doi:10.1038/jp.2010.193  PMCID:PMC3145821  PMID:21273988 
  34. Bacterial DNA content in the intestinal wall from infants with necrotizing enterocolitis. J Pediatr Surg. 2011;46(6):1029-33. doi:10.1016/j.jpedsurg.2011.03.026  PMCID:PMC3118995  PMID:21683193 
  35. Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J Pediatr. 2011;158(5):745-51. doi:10.1016/j.jpeds.2010.10.043  PMCID:PMC3412418  PMID:21256510 
  36. Predictors of the need for extracorporeal membrane oxygenation and survival in congenital diaphragmatic hernia: a center's 10-year experience. Prenat Diagn. 2010;30(6):518-21. doi:10.1002/pd.2508  PMID:20509150 
  37. A method for isolating and analyzing human mRNA from newborn stool. J Immunol Methods. 2009;349(1-2):56-60. doi:10.1016/j.jim.2009.07.013  PMCID:PMC2850193  PMID:19660464 
  38. Role of epidermal growth factor and other growth factors in the prevention of necrotizing enterocolitis. Semin Perinatol. 2008;32(2):107-13. PMID:18346534 
  39. Ontogeny of salivary epidermal growth factor and necrotizing enterocolitis. J Pediatr. 2007;150(4):358-63. doi:10.1016/j.jpeds.2006.11.059  PMID:17382110 
  40. Role of epidermal growth factor in the pathogenesis of neonatal necrotizing enterocolitis. Semin Pediatr Surg. 2005;14(3):175-80. PMID:16084405 
  41. Evidence-based Care Guideline for Medical Management of Very Low Birth Weight Infants at Risk for NEC National Guideline Clearinghouse. Agency for Health Care Research and Quality. US DHSS. www.guidelines.gov. 2005. 
  42. The development of a research human milk bank. J Hum Lact. 2005;21(1):59-66. doi:10.1177/0890334404273162  PMID:15681638 
  43. Changing the NICU Physically and Behaviorally to Promote Patient Outcomes and Contain Costs Neonatal Intensive Care : The Journal of Perinatolgy - Neonatology. 2004;17(2):35-39. 
  44. Designing and Monitoring an RN-Based PICC Team Neonatal Intensive Care: The Journal of Perinatology - Neonatology. 2004;17(2):19-21. 
  45. Misappropriated Human Milk: Fantasy, Fear, and Fact Regarding Infectious Risk Newborn and Infant Nursing Reviews. 2004;4(1):56-61. 
  46. The effect of birth hospital type on the outcome of very low birth weight infants. Pediatrics. 2004;113(1 Pt 1):35-41. PMID:14702444 
  47. Clinical Excellence for High Risk Neonates: Improved Perinatal Regionalization Through Coordinated Maternal and Neonatal Transport Neonatal Intensive Care: The Journal of Perinatology-Neonatology . 2002;15(6):33-38. 
  48. Multiple births and outcome. Clin Perinatol. 2000;27(2):347-61, ix. PMID:10863654 
  49. Neonatal thermoregulation: bed surface transfers. Neonatal Netw. 1999;18(4):35-8. doi:10.1891/0730-0832.18.4.35  PMID:10633683 
  50. Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998;275(1 Pt 1):L110-7. PMID:9688942 
  51. Redox regulation of manganese superoxide dismutase. Am J Physiol. 1996;271(1 Pt 1):L150-8. PMID:8760145 
  52. Expression of human Mn SOD in Chinese hamster ovary cells confers protection from oxidant injury. Am J Physiol. 1993;264(6 Pt 1):L598-605. PMID:8333551 
  53. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 1992;267(33):23937-41. PMID:1385428 
  54. Free radical-mediated diseases in pediatrics. Semin Perinatol. 1992;16(1):47-57. PMID:1574724 
  55. Tumor necrosis factor-alpha increases Mn-SOD expression: protection against oxidant injury. Am J Physiol. 1991;260(4 Pt 1):L296-301. PMID:1850207 
  56. Tumor necrosis factor-alpha inhibits expression of pulmonary surfactant protein. J Clin Invest. 1990;86(6):1954-60. doi:10.1172/JCI114929  PMCID:PMC329831  PMID:2123888 
  57. Persistent metagenomic signatures of early life hospitalization and antibiotic treatment in the infant gut microbiota and resistome Nat Microbiol, accepted. 
Last updated: 07/20/2019
© 2019 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130