Jonathan D Cooper, Ph.D.

Profile picture
Professor of Pediatrics, Genetics and Genomic Medicine
NeurologyGenetics and Genomic MedicinePatient Oriented Research UnitGenetics

phone: (314) 454-6093


  • BSc, Honors, University of Sheffield, UK1986
  • PhD, University of Bristol, UK1990


  • MRC Postdoctoral Training Fellow, University of Cambridge1990 - 1993
  • Postdoctoral Fellow, Max-Planck-Institute for Psychiatry1993 - 1996
  • Senior Postdoctoral Fellow, University of California San Francisco & Stanford University1996 - 2000

Honors and Awards

  • Anatomical Society of Great Britain and Ireland Undergraduate Prize1986 - 1987
  • Medical Research Council Postdoctoral Training Fellowship1990 - 1993
  • Human Capital and Mobility Fellowship of the European Commission1994 - 1996
  • Edwin Boldrey Award of the San Francisco Neurological Society for Excellence in Basic Science Neurological Research1999
  • NCL Stiftung Research Award2012
  • Institute of Psychiatry, Psychology and Neuroscience, Lifetime Achievement Award for excellence in Postgraduate Research Education2016

Recent Publications view all (144)

Publication Co-Authors

  1. Glial pathology and its contribution to the pathogenesis of the neuronal ceroid lipofuscinoses (in press) Frontiers in Neurology. 2022. 
  2. Cortical interneuron loss and seizure generation as novel clinically relevant phenotypes in Cln2R207X mice BioRxiv . 2022. doi:10.1101/2022.03.11.483984  
  3. Neuropathology of murine Sanfilippo D syndrome. Mol Genet Metab. 2021;134(4):323-329. PMID:34844863 
  4. Brain volume in chronic ketamine users - relationship to sub-threshold psychotic symptoms and relevance to schizophrenia. Psychopharmacology (Berl). 2021. PMID:34228135 
  5. Biochemical evaluation of intracerebroventricular rhNAGLU-IGF2 enzyme replacement therapy in neonatal mice with Sanfilippo B syndrome. Mol Genet Metab. 2021;133(2):185-192. PMCID:PMC8195848  PMID:33839004 
  6. Intracranial delivery of AAV9 gene therapy partially prevents retinal degeneration and visual deficits in CLN6-Batten disease mice. Mol Ther Methods Clin Dev. 2021;20:497-507. PMCID:PMC7887332  PMID:33665223 
  7. Spinal manifestations of CLN1 disease start during the early postnatal period. Neuropathol Appl Neurobiol. 2021;47(2):251-267. PMCID:PMC7867600  PMID:32841420 
  8. Central nervous system pathology in preclinical MPS IIIB dogs reveals progressive changes in clinically relevant brain regions. Sci Rep. 2020;10(1):20365. PMCID:PMC7684310  PMID:33230178 
  9. Comparative proteomic profiling reveals mechanisms for early spinal cord vulnerability in CLN1 disease. Sci Rep. 2020;10(1):15157. PMCID:PMC7495486  PMID:32938982 
  10. Future perspectives: What lies ahead for Neuronal Ceroid Lipofuscinosis research? Biochim Biophys Acta Mol Basis Dis. 2020;1866(9):165681. PMID:31926264 
  11. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis. 2020;1866(9):165570. PMID:31678162 
  12. Myelin and Lipid Composition of the Corpus Callosum in Mucopolysaccharidosis Type I Mice. Lipids. 2020. doi:10.1002/lipd.12261  PMID:32537944 
  13. Generation of light-producing somatic-transgenic mice using adeno-associated virus vectors. Sci Rep. 2020;10(1):2121. PMCID:PMC7005886  PMID:32034258 
  14. Combined Anti-inflammatory and Neuroprotective Treatments Have the Potential to Impact Disease Phenotypes in Cln3 -/- Mice. Front Neurol. 2019;10:963. PMCID:PMC6749847  PMID:31572287 
  15. CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep. 2019;9(1):9891. PMCID:PMC6616324  PMID:31289301 
  16. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet neurology. 2019;18(1):107-116. PMID:30470609 
  17. Genetically Corrected iPSC-Derived Neural Stem Cell Grafts Deliver Enzyme Replacement to Affect CNS Disease in Sanfilippo B Mice. Mol Ther Methods Clin Dev. 2018;10:113-127. PMCID:PMC6076361  PMID:30101150 
  18. Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun. 2018. PMID:30089511 
  19. Trehalose reduces retinal degeneration, neuroinflammation and storage burden caused by a lysosomal hydrolase deficiency. Autophagy. 2018;1-16. PMID:29916295 
  20. Fetal gene therapy for neurodegenerative disease of infants. Nat Med. 2018. PMID:30013199 
  21. A Humoral Immune Response Alters the Distribution of Enzyme Replacement Therapy in Murine Mucopolysaccharidosis Type I. Mol Ther Methods Clin Dev. 2018;8:42-51. PMCID:PMC5684429  PMID:29159202 
  22. Intravenous administration of scAAV9-Hexb normalizes lifespan and prevents pathology in Sandhoff disease mice. Hum Mol Genet. 2018;27(6):954-968. PMID:29325092 
  23. Glial cells are functionally impaired in juvenile neuronal ceroid lipofuscinosis and detrimental to neurons. Acta Neuropathol Commun. 2017;5(1):74. PMCID:PMC5645909  PMID:29041969 
  24. Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Sci Rep. 2017;7(1):12412. PMCID:PMC5622084  PMID:28963550 
  25. Partial rescue of neuropathology in the murine model of PKU following administration of recombinant phenylalanine ammonia lyase (pegvaliase). Mol Genet Metab. 2017;122(1-2):33-35. PMID:28506393 
  26. Progress toward Fulfilling the Potential of Immunomodulation in Childhood Neurodegeneration? Mol Ther. 2017;25(8):1743-1745. PMCID:PMC5542794  PMID:28625570 
  27. Synergistic effects of treating the spinal cord and brain in CLN1 disease. Proc Natl Acad Sci U S A. 2017;114(29):E5920-E5929. PMCID:PMC5530669  PMID:28673981 
  28. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: A longitudinal in vivo MRI study. Brain Behav Immun. 2017;63:50-59. PMCID:PMC5441572  PMID:27940258 
  29. Corrigendum: mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun. 2017;8:15793. PMCID:PMC5474731  PMID:28607479 
  30. Efficacy of phosphodiesterase-4 inhibitors in juvenile Batten disease (CLN3). Ann Neurol. 2016;80(6):909-923. PMCID:PMC5215570  PMID:27804148 
  31. Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): Expert recommendations for early detection and laboratory diagnosis. Mol Genet Metab. 2016;119(1-2):160-7. PMID:27553878 
  32. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease). PLoS One. 2016;11(6):e0157365. PMCID:PMC4915684  PMID:27327661 
  33. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res. 2015;5(1):69. PMCID:PMC4661159  PMID:26611870 
  34. Longitudinal in vivo maturational changes of metabolites in the prefrontal cortex of rats exposed to polyinosinic-polycytidylic acid in utero. Eur Neuropsychopharmacol. 2015;25(12):2210-20. PMID:26475576 
  35. Microglial activation in the rat brain following chronic antipsychotic treatment at clinically relevant doses. Eur Neuropsychopharmacol. 2015;25(11):2098-107. PMID:26321204 
  36. Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta. 2015;1852(10 Pt B):2256-61. PMID:26026924 
  37. Intrathecal enzyme replacement therapy improves motor function and survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2015;116(1-2):98-105. PMID:25982063 
  38. Systemic gene delivery following intravenous administration of AAV9 to fetal and neonatal mice and late-gestation nonhuman primates. FASEB J. 2015;29(9):3876-88. PMCID:PMC4560173  PMID:26062602 
  39. A novel, long-lived, and highly engraftable immunodeficient mouse model of mucopolysaccharidosis type I. Mol Ther Methods Clin Dev. 2015;2:14068. PMCID:PMC4449030  PMID:26052536 
  40. Nonclinical evaluation of CNS-administered TPP1 enzyme replacement in canine CLN2 neuronal ceroid lipofuscinosis. Mol Genet Metab. 2015;114(2):281-93. PMID:25257657 
  41. Quantifying storage material accumulation in tissue sections. Methods Cell Biol. 2015;126:349-56. PMID:25665454 
  42. Guidelines for incorporating scientific knowledge and practice on rare diseases into higher education: neuronal ceroid lipofuscinoses as a model disorder. Biochimica et biophysica acta. 2015;1852(10 Pt B):2316-23. 
  43. An anti-neuroinflammatory that targets dysregulated glia enhances the efficacy of CNS-directed gene therapy in murine infantile neuronal ceroid lipofuscinosis. J Neurosci. 2014;34(39):13077-82. PMCID:PMC4172802  PMID:25253854 
  44. Behavioral deficits, early gliosis, dysmyelination and synaptic dysfunction in a mouse model of mucolipidosis IV. Acta Neuropathol Commun. 2014;2:133. PMCID:PMC4173007  PMID:25200117 
  45. Reduced cortical volume and elevated astrocyte density in rats chronically treated with antipsychotic drugs-linking magnetic resonance imaging findings to cellular pathology. Biol Psychiatry. 2014;75(12):982-90. PMID:24143881 
  46. Partial correction of the CNS lysosomal storage defect in a mouse model of juvenile neuronal ceroid lipofuscinosis by neonatal CNS administration of an adeno-associated virus serotype rh.10 vector expressing the human CLN3 gene. Hum Gene Ther. 2014;25(3):223-39. PMCID:PMC3955974  PMID:24372003 
  47. A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease. PLoS One. 2013;8(11):e78694. PMCID:PMC3815212  PMID:24223841 
  48. Pathogenesis and therapies for infantile neuronal ceroid lipofuscinosis (infantile CLN1 disease). Biochim Biophys Acta. 2013;1832(11):1906-9. PMCID:PMC4573397  PMID:23747979 
  49. NCL disease mechanisms. Biochim Biophys Acta. 2013;1832(11):1882-93. PMID:23707513 
  50. Special issue: molecular basis of the NCLs. Biochim Biophys Acta. 2013;1832(11):1793-4. PMID:23727410 
  51. Regional brain atrophy in mouse models of neuronal ceroid lipofuscinosis: a new rostrocaudal perspective. J Child Neurol. 2013;28(9):1117-22. PMID:24014506 
  52. A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation. Brain. 2013;136(Pt 5):1488-507. PMID:23587805 
  53. Cathepsin F mutations cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis. Hum Mol Genet. 2013;22(7):1417-23. PMCID:PMC3596852  PMID:23297359 
  54. Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain. 2013;136(Pt 4):1083-101. PMID:23485853 
  55. Exacerbated neuronal ceroid lipofuscinosis phenotype in Cln1/5 double-knockout mice. Dis Model Mech. 2013;6(2):342-57. PMCID:PMC3597017  PMID:23065637 
  56. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol.. 2013;125(2):273-88. PMID:22961620 
  57. Age-dependent therapeutic effect of memantine in a mouse model of juvenile Batten disease. 2012;63(5):769-75. PMID:22683643 
  58. Selective spatiotemporal patterns of glial activation and neuron loss in the sensory thalamocortical pathways of neuronal ceroid lipofuscinosis 8 mice. Neurobiology of Disease. 2012;47(3):444-57. PMID:22569358 
  59. In utero administration of Ad5 and AAV pseudotypes to the fetal brain leads to efficient, widespread and long-term gene expression. Gene Ther. . 2012;19(9):936-46. PMID:22071970 
  60. Galactolipid deficiency in the early pathogenesis of neuronal ceroid lipofuscinosis model Cln8mnd : implications to delayed myelination and oligodendrocyte maturation. Neuropathol Appl Neurobiol. 2012;38(5):471-86. PMID:22044361 
  61. Contrasting effects of haloperidol and lithium on rodent brain structure: a magnetic resonance imaging study with postmortem confirmation. Biol Psychiatry. 2012;71(10):855-63. PMID:22244831 
  62. Cln5-deficiency in mice leads to microglial activation, defective myelination and changes in lipid metabolism. Neurobiol Dis. 2012;46(1):19-29. PMID:22182690 
  63. Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis. 2012;45(3):1086-100. PMCID:PMC3657200  PMID:22198570 
  64. Synergistic effects of central nervous system-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Annals of neurology. 2012;71(6):797-804. 
  65. Early microglial activation precedes neuronal loss in the brain of the Cstb-/- mouse model of progressive myoclonus epilepsy, EPM1 Journal of neuropathology and experimental neurology. 2012;71(1):40-53. 
  66. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. NIHMSID: NIHMS379947 Molecular genetics and metabolism. 2012;107(1-2):213-21. 
  67. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. NIHMSID: NIHMS609910 Journal of inherited metabolic disease. 2012;35(5):847-57. 
  68. Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB PloS one. 2012;7(4):e35787. 
  69. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. PLoS One. 2012;7(4):e35493. PMCID:PMC3335005  PMID:22536393 
  70. Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease Human molecular genetics. 2011;20(7):1375-86. 
  71. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses Journal of biomolecular NMR. 2011;49(3-4):175-84. 
  72. Insulin receptor substrate 2 is a negative regulator of memory formation Learning & memory (Cold Spring Harbor, N.Y.). 2011;18(6):375-83. 
  73. Loss of amyloid precursor protein in a mouse model of Niemann-Pick type C disease exacerbates its phenotype and disrupts tau homeostasis. . 2011; 42(3):349-59. Neurobiology of disease. 2011;42(3):349-59. 
  74. Immunosuppression alters disease severity in juvenile Batten disease mice Journal of neuroimmunology. 2011;230(1-2):169-72. 
  75. Temporary inhibition of AMPA receptors induces a prolonged improvement of motor performance in a mouse model of juvenile Batten disease NIHMSID: NIHMS252642 Neuropharmacology. 2011;60(2-3):405-9. 
  76. Morphologic and functional correlates of synaptic pathology in the cathepsin D knockout mouse model of congenital neuronal ceroid lipofuscinosis NIHMSID: UKMS36995 Journal of neuropathology and experimental neurology. 2011;70(12):1089-96. 
  77. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2011;25(10):3505-18. 
  78. The neuronal ceroid lipofuscinoses: the same, but different? Biochemical Society transactions. 2010;38(6):1448-52. PMID:21118105 
  79. In utero gene transfer to the mouse nervous system. Biochemical Society transactions. 2010;38(6):1489-93. PMID:21118113 
  80. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. . 2010; 285(17):13022-31. The Journal of biological chemistry. 2010;285(17):13022-31. 
  81. Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis. Biochemical Society transactions. 2010;38(6):1484-8. 
  82. The RGD-containing peptide fragment of osteopontin protects tyrosine hydroxylase positive cells against toxic insult in primary ventral mesencephalic cultures and in the rat substantia nigra. . 2010; 114(6):1792-804. Journal of neurochemistry. 2010;114(6):1792-804. 
  83. Anti-inflammatory impact of minocycline in a mouse model of tauopathy Frontiers in psychiatry. 2010;1:136. 
  84. Effects of cis-regulatory variation differ across regions of the adult human brain. . 2010; 19(22):4490-6. Human molecular genetics. 2010;19(22):4490-6. 
  85. Circadian rhythm and suprachiasmatic nucleus alterations in the mouse model of mucopolysaccharidosis IIIB. . 2010; 209(2):212-20. Behavioural brain research. 2010;209(2):212-20. 
  86. Distinct neuropathologic phenotypes after disrupting the chloride transport proteins ClC-6 or ClC-7/Ostm1 Journal of neuropathology and experimental neurology. 2010;69(12):1228-46. 
  87. Progressive thalamocortical neuron loss in Cln5 deficient mice: Distinct effects in Finnish variant late infantile NCL. Neurobiol Dis. 2009;34(2):308-19. PMCID:PMC2704904  PMID:19385065 
  88. Cerebellar defects in a mouse model of juvenile neuronal ceroid lipofuscinosis NIHMSID: NIHMS97005 Brain research. 2009;1266:93-107. 
  89. An immunohistochemical and stereological analysis of PSI-induced nigral neuronal degeneration in the rat. Journal of neurochemistry 2009;109(1):52-9. 
  90. Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease Human molecular genetics. 2009;18(21):4066-80. 
  91. Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse NIHMSID: NIHMS95940 Experimental neurology. 2009;217(1):124-35. 
  92. Efficient gene delivery to the adult and fetal CNS using pseudotyped non-integrating lentiviral vectors Gene therapy. 2009;16(4):509-20. 
  93. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis Cell stem cell. 2009;5(3):310-9. 
  94. Location and connectivity determine GABAergic interneuron survival in the brains of South Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol Dis. 2008;32(1):50-65. PMCID:PMC2647510  PMID:18634879 
  95. Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases. BMC Genomics. 2008;9:146. PMCID:PMC2323392  PMID:18371231 
  96. Immune system irregularities in lysosomal storage disorders. Acta neuropathologica. 2008;115(2):159-74. 
  97. Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis Molecular therapy : the journal of the American Society of Gene Therapy. 2008;16(4):649-56. 
  98. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. . 2008; 67(1):16-29 Journal of neuropathology and experimental neurology. 2008;67(1):16-29. 
  99. Moving towards therapies for juvenile Batten disease? Experimental neurology. 2008;211(2):329-31. 
  100. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis Neurobiology of disease. 2007;25(1):150-62. 
  101. IgG entry and deposition are components of the neuroimmune response in Batten disease Neurobiology of disease. 2007;25(2):239-51. 
  102. Alterations in striatal dopamine catabolism precede loss of substantia nigra neurons in a mouse model of juvenile neuronal ceroid lipofuscinosis Brain research. 2007;1162:98-112. 
  103. Progress towards understanding disease mechanisms in small vertebrate models of neuronal ceroid lipofuscinosis. Biochimica et biophysica acta. 2006;1762(10):873-89. 
  104. CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis Molecular therapy : the journal of the American Society of Gene Therapy. 2006;13(3):538-47. 
  105. Distinct patterns of serum immunoreactivity as evidence for multiple brain-directed autoantibodies in juvenile neuronal ceroid lipofuscinosis Neuropathology and applied neurobiology. 2006;32(5):469-82. 
  106. Activation of non-neuronal cells within the prenatal developing brain of sheep with neuronal ceroid lipofuscinosis Brain pathology (Zurich, Switzerland). 2006;16(2):110-6. 
  107. Visual deficits in a mouse model of Batten disease are the result of optic nerve degeneration and loss of dorsal lateral geniculate thalamic neurons Neurobiology of disease. 2006;22(2):284-93. 
  108. Thalamocortical neuron loss and localized astrocytosis in the Cln3Deltaex7/8 knock-in mouse model of Batten disease. Neurobiol Dis. 2005;20(3):823-36. PMID:16006136 
  109. Glial activation spreads from specific cerebral foci and precedes neurodegeneration in presymptomatic ovine neuronal ceroid lipofuscinosis (CLN6). Neurobiol Dis. 2005;20(1):49-63. PMID:16137566 
  110. High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of Batten disease The Journal of biological chemistry. 2005;280(52):42508-14. 
  111. FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development Developmental biology. 2005;279(1):73-85. 
  112. Late onset neurodegeneration in the Cln3-/- mouse model of juvenile neuronal ceroid lipofuscinosis is preceded by low level glial activation. Brain Res. 2004;1023(2):231-42. PMID:15374749 
  113. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol. 2004;14(4):349-57. PMCID:PMC8095893  PMID:15605981 
  114. Selectivity and types of cell death in the neuronal ceroid lipofuscinoses. Brain pathology (Zurich, Switzerland). 2004;14(1):86-96. 
  115. Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis Neurobiology of disease. 2004;16(2):346-59. 
  116. Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis Neurobiology of disease. 2004;16(2):360-69. 
  117. p38alpha stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis Molecular and cellular neurosciences. 2004;26(2):354-64. 
  118. A novel somatodendritic marker defined by a peptide derived from the ALS2 protein Neuroreport. 2004;15(14):2155-9. 
  119. Trafficking the NGF signal: implications for normal and degenerating neurons Progress in brain research. 2004;146:3-23. 
  120. Enhanced expression of manganese-dependent superoxide dismutase in human and sheep CLN6 tissues. Biochem J. 2003;376(Pt 2):369-76. PMCID:PMC1223781  PMID:12946273 
  121. The neuronal adaptor protein X11alpha reduces Abeta levels in the brains of Alzheimer's APPswe Tg2576 transgenic mice The Journal of biological chemistry. 2003;278(47):47025-9. 
  122. Progress towards understanding the neurobiology of Batten disease or neuronal ceroid lipofuscinosis. Current opinion in neurology. 2003;16(2):121-8. 
  123. Identification of a novel, membrane-associated neuronal kinase, cyclin-dependent kinase 5/p35-regulated kinase The Journal of neuroscience : the official journal of the Society for Neuroscience. 2003;23(12):4975-83. 
  124. Expression of the Fe65 adapter protein in adult and developing mouse brain. Neuroscience. 2002;115(3):951-60. 
  125. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease Human molecular genetics. 2002;11(12):1421-31. 
  126. Failed retrograde transport of NGF in a mouse model of Down's syndrome: reversal of cholinergic neurodegenerative phenotypes following NGF infusion Proceedings of the National Academy of Sciences of the United States of America. 2001;98(18):10439-44. 
  127. Neurotrophic factors as potential therapeutic agents in neuronal ceroid lipofuscinosis. Advances in genetics. . 2001;45:169-82. 
  128. Targeted disruption of the Cln3 gene provides a mouse model for Batten disease. The Batten Mouse Model Consortium [corrected]. Neurobiol Dis. 1999;6(5):321-34. PMID:10527801 
  129. Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment The Journal of neuroscience : the official journal of the Society for Neuroscience. 1999;19(7):2556-67. 
  130. Ganglioside GM1 potentiates NGF action on axotomised medial septal cholinergic neurons Brain research. 1998;812(1-2):76-80. 
  131. Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation The Journal of neuroscience : the official journal of the Society for Neuroscience. 1997;17(20):7594-605. 
  132. Increased vulnerability of septal cholinergic neurons to partial loss of target neurons in aged rats Neuroscience. 1996;75(1):29-35. 
  133. Delayed death of septal cholinergic neurons after excitotoxic ablation of hippocampal neurons during early postnatal development in the rat Experimental neurology. 1996;139(1):143-55. 
  134. Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats Neuroscience. 1996;75(1):19-27. 
  135. Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development Neuron. 1996;17(1):75-89. 
  136. NMDA potentiates NGF-induced sprouting of septal cholinergic fibres Neuroreport. 1994;5(4):413-6. 
  137. Reduced transport of 125I-nerve growth factor by cholinergic neurons and down-regulated TrkA expression in the medial septum of aged rats Neuroscience. 1994;62(3):625-9. 
  138. Central neuroanatomical organisation of the rat visuomotor system. Prog Neurobiol. 1993;41(2):209-79. PMID:8332752 
  139. Atrophy but not death of adult septal cholinergic neurons after ablation of target capacity to produce mRNAs for NGF, BDNF, and NT3 The Journal of neuroscience; the official journal of the Society for Neuroscience. 1993;13(12):5263-76. 
  140. Trophic factor effects on septal cholinergic neurons. Annals of the New York Academy of Sciences. 1991;640:91-4. 
  141. Projections to the rostral reticular thalamic nucleus in the rat Experimental brain research. 1990;80(1):157-71. 
  142. Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain research bulletin 1990;25(2):271-84. 
  143. Accurate counting of neurons in frozen sections: some necessary precautions. Journal of anatomy Journal of anatomy. 1988;80(1):13-21. 
  144. A temperature controlled chamber to allow observation and measurement of uptake of fluorochromes into live cells Journal of microscopy. 1987;14(3):329-35. 
Last updated: 05/06/2022
© 2022 by Washington University in St. Louis
One Brookings Drive, St. Louis, MO 63130